Metamath Proof Explorer


Theorem bddnghm

Description: A bounded group homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N = S normOp T
Assertion bddnghm S NrmGrp T NrmGrp F S GrpHom T A N F A F S NGHom T

Proof

Step Hyp Ref Expression
1 nmofval.1 N = S normOp T
2 1 nmocl S NrmGrp T NrmGrp F S GrpHom T N F *
3 1 nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 N F
4 2 3 jca S NrmGrp T NrmGrp F S GrpHom T N F * 0 N F
5 xrrege0 N F * A 0 N F N F A N F
6 5 an4s N F * 0 N F A N F A N F
7 4 6 sylan S NrmGrp T NrmGrp F S GrpHom T A N F A N F
8 1 isnghm2 S NrmGrp T NrmGrp F S GrpHom T F S NGHom T N F
9 8 adantr S NrmGrp T NrmGrp F S GrpHom T A N F A F S NGHom T N F
10 7 9 mpbird S NrmGrp T NrmGrp F S GrpHom T A N F A F S NGHom T