Metamath Proof Explorer


Theorem bdopcoi

Description: The composition of two bounded linear operators is bounded. (Contributed by NM, 9-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 S BndLinOp
nmoptri.2 T BndLinOp
Assertion bdopcoi S T BndLinOp

Proof

Step Hyp Ref Expression
1 nmoptri.1 S BndLinOp
2 nmoptri.2 T BndLinOp
3 bdopln S BndLinOp S LinOp
4 1 3 ax-mp S LinOp
5 bdopln T BndLinOp T LinOp
6 2 5 ax-mp T LinOp
7 4 6 lnopcoi S T LinOp
8 4 lnopfi S :
9 6 lnopfi T :
10 8 9 hocofi S T :
11 nmopxr S T : norm op S T *
12 10 11 ax-mp norm op S T *
13 nmopre S BndLinOp norm op S
14 1 13 ax-mp norm op S
15 nmopre T BndLinOp norm op T
16 2 15 ax-mp norm op T
17 14 16 remulcli norm op S norm op T
18 nmopgtmnf S T : −∞ < norm op S T
19 10 18 ax-mp −∞ < norm op S T
20 1 2 nmopcoi norm op S T norm op S norm op T
21 xrre norm op S T * norm op S norm op T −∞ < norm op S T norm op S T norm op S norm op T norm op S T
22 12 17 19 20 21 mp4an norm op S T
23 elbdop2 S T BndLinOp S T LinOp norm op S T
24 7 22 23 mpbir2an S T BndLinOp