Metamath Proof Explorer


Theorem bdophdi

Description: The difference between two bounded linear operators is bounded. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 S BndLinOp
nmoptri.2 T BndLinOp
Assertion bdophdi S - op T BndLinOp

Proof

Step Hyp Ref Expression
1 nmoptri.1 S BndLinOp
2 nmoptri.2 T BndLinOp
3 bdopf S BndLinOp S :
4 1 3 ax-mp S :
5 bdopf T BndLinOp T :
6 2 5 ax-mp T :
7 4 6 honegsubi S + op -1 · op T = S - op T
8 neg1cn 1
9 2 bdophmi 1 -1 · op T BndLinOp
10 8 9 ax-mp -1 · op T BndLinOp
11 1 10 bdophsi S + op -1 · op T BndLinOp
12 7 11 eqeltrri S - op T BndLinOp