Metamath Proof Explorer


Theorem bdophmi

Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmophm.1 T BndLinOp
Assertion bdophmi A A · op T BndLinOp

Proof

Step Hyp Ref Expression
1 nmophm.1 T BndLinOp
2 bdopln T BndLinOp T LinOp
3 1 2 ax-mp T LinOp
4 3 lnopmi A A · op T LinOp
5 1 nmophmi A norm op A · op T = A norm op T
6 abscl A A
7 nmopre T BndLinOp norm op T
8 1 7 ax-mp norm op T
9 remulcl A norm op T A norm op T
10 6 8 9 sylancl A A norm op T
11 5 10 eqeltrd A norm op A · op T
12 elbdop2 A · op T BndLinOp A · op T LinOp norm op A · op T
13 4 11 12 sylanbrc A A · op T BndLinOp