Metamath Proof Explorer


Theorem bernneq2

Description: Variation of Bernoulli's inequality bernneq . (Contributed by NM, 18-Oct-2007)

Ref Expression
Assertion bernneq2 A N 0 0 A A 1 N + 1 A N

Proof

Step Hyp Ref Expression
1 peano2rem A A 1
2 1 3ad2ant1 A N 0 0 A A 1
3 simp2 A N 0 0 A N 0
4 df-neg 1 = 0 1
5 0re 0
6 1re 1
7 lesub1 0 A 1 0 A 0 1 A 1
8 5 6 7 mp3an13 A 0 A 0 1 A 1
9 8 biimpa A 0 A 0 1 A 1
10 4 9 eqbrtrid A 0 A 1 A 1
11 10 3adant2 A N 0 0 A 1 A 1
12 bernneq A 1 N 0 1 A 1 1 + A 1 N 1 + A - 1 N
13 2 3 11 12 syl3anc A N 0 0 A 1 + A 1 N 1 + A - 1 N
14 ax-1cn 1
15 1 recnd A A 1
16 nn0cn N 0 N
17 mulcl A 1 N A 1 N
18 15 16 17 syl2an A N 0 A 1 N
19 addcom 1 A 1 N 1 + A 1 N = A 1 N + 1
20 14 18 19 sylancr A N 0 1 + A 1 N = A 1 N + 1
21 20 3adant3 A N 0 0 A 1 + A 1 N = A 1 N + 1
22 recn A A
23 pncan3 1 A 1 + A - 1 = A
24 14 22 23 sylancr A 1 + A - 1 = A
25 24 oveq1d A 1 + A - 1 N = A N
26 25 3ad2ant1 A N 0 0 A 1 + A - 1 N = A N
27 13 21 26 3brtr3d A N 0 0 A A 1 N + 1 A N