Metamath Proof Explorer


Theorem bernneq3

Description: A corollary of bernneq . (Contributed by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion bernneq3 P 2 N 0 N < P N

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 1 adantl P 2 N 0 N
3 peano2re N N + 1
4 2 3 syl P 2 N 0 N + 1
5 eluzelre P 2 P
6 reexpcl P N 0 P N
7 5 6 sylan P 2 N 0 P N
8 2 ltp1d P 2 N 0 N < N + 1
9 uz2m1nn P 2 P 1
10 9 adantr P 2 N 0 P 1
11 10 nnred P 2 N 0 P 1
12 11 2 remulcld P 2 N 0 P 1 N
13 peano2re P 1 N P 1 N + 1
14 12 13 syl P 2 N 0 P 1 N + 1
15 1red P 2 N 0 1
16 nn0ge0 N 0 0 N
17 16 adantl P 2 N 0 0 N
18 10 nnge1d P 2 N 0 1 P 1
19 2 11 17 18 lemulge12d P 2 N 0 N P 1 N
20 2 12 15 19 leadd1dd P 2 N 0 N + 1 P 1 N + 1
21 5 adantr P 2 N 0 P
22 simpr P 2 N 0 N 0
23 eluzge2nn0 P 2 P 0
24 nn0ge0 P 0 0 P
25 23 24 syl P 2 0 P
26 25 adantr P 2 N 0 0 P
27 bernneq2 P N 0 0 P P 1 N + 1 P N
28 21 22 26 27 syl3anc P 2 N 0 P 1 N + 1 P N
29 4 14 7 20 28 letrd P 2 N 0 N + 1 P N
30 2 4 7 8 29 ltletrd P 2 N 0 N < P N