Metamath Proof Explorer


Theorem bezoutlem1

Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014)

Ref Expression
Hypotheses bezout.1 M = z | x y z = A x + B y
bezout.3 φ A
bezout.4 φ B
Assertion bezoutlem1 φ A 0 A M

Proof

Step Hyp Ref Expression
1 bezout.1 M = z | x y z = A x + B y
2 bezout.3 φ A
3 bezout.4 φ B
4 fveq2 z = A z = A
5 oveq1 z = A z x = A x
6 4 5 eqeq12d z = A z = z x A = A x
7 6 rexbidv z = A x z = z x x A = A x
8 zre z z
9 1z 1
10 ax-1rid z z 1 = z
11 10 eqcomd z z = z 1
12 oveq2 x = 1 z x = z 1
13 12 rspceeqv 1 z = z 1 x z = z x
14 9 11 13 sylancr z x z = z x
15 eqeq1 z = z z = z x z = z x
16 15 rexbidv z = z x z = z x x z = z x
17 14 16 syl5ibrcom z z = z x z = z x
18 neg1z 1
19 recn z z
20 19 mulm1d z -1 z = z
21 neg1cn 1
22 mulcom 1 z -1 z = z -1
23 21 19 22 sylancr z -1 z = z -1
24 20 23 eqtr3d z z = z -1
25 oveq2 x = 1 z x = z -1
26 25 rspceeqv 1 z = z -1 x z = z x
27 18 24 26 sylancr z x z = z x
28 eqeq1 z = z z = z x z = z x
29 28 rexbidv z = z x z = z x x z = z x
30 27 29 syl5ibrcom z z = z x z = z x
31 absor z z = z z = z
32 17 30 31 mpjaod z x z = z x
33 8 32 syl z x z = z x
34 7 33 vtoclga A x A = A x
35 2 34 syl φ x A = A x
36 3 zcnd φ B
37 36 adantr φ x B
38 37 mul01d φ x B 0 = 0
39 38 oveq2d φ x A x + B 0 = A x + 0
40 2 zcnd φ A
41 zcn x x
42 mulcl A x A x
43 40 41 42 syl2an φ x A x
44 43 addid1d φ x A x + 0 = A x
45 39 44 eqtrd φ x A x + B 0 = A x
46 45 eqeq2d φ x A = A x + B 0 A = A x
47 0z 0
48 oveq2 y = 0 B y = B 0
49 48 oveq2d y = 0 A x + B y = A x + B 0
50 49 rspceeqv 0 A = A x + B 0 y A = A x + B y
51 47 50 mpan A = A x + B 0 y A = A x + B y
52 46 51 syl6bir φ x A = A x y A = A x + B y
53 52 reximdva φ x A = A x x y A = A x + B y
54 35 53 mpd φ x y A = A x + B y
55 nnabscl A A 0 A
56 55 ex A A 0 A
57 2 56 syl φ A 0 A
58 eqeq1 z = A z = A x + B y A = A x + B y
59 58 2rexbidv z = A x y z = A x + B y x y A = A x + B y
60 59 1 elrab2 A M A x y A = A x + B y
61 60 simplbi2com x y A = A x + B y A A M
62 54 57 61 sylsyld φ A 0 A M