Step |
Hyp |
Ref |
Expression |
1 |
|
bezout.1 |
|
2 |
|
bezout.3 |
|
3 |
|
bezout.4 |
|
4 |
|
fveq2 |
|
5 |
|
oveq1 |
|
6 |
4 5
|
eqeq12d |
|
7 |
6
|
rexbidv |
|
8 |
|
zre |
|
9 |
|
1z |
|
10 |
|
ax-1rid |
|
11 |
10
|
eqcomd |
|
12 |
|
oveq2 |
|
13 |
12
|
rspceeqv |
|
14 |
9 11 13
|
sylancr |
|
15 |
|
eqeq1 |
|
16 |
15
|
rexbidv |
|
17 |
14 16
|
syl5ibrcom |
|
18 |
|
neg1z |
|
19 |
|
recn |
|
20 |
19
|
mulm1d |
|
21 |
|
neg1cn |
|
22 |
|
mulcom |
|
23 |
21 19 22
|
sylancr |
|
24 |
20 23
|
eqtr3d |
|
25 |
|
oveq2 |
|
26 |
25
|
rspceeqv |
|
27 |
18 24 26
|
sylancr |
|
28 |
|
eqeq1 |
|
29 |
28
|
rexbidv |
|
30 |
27 29
|
syl5ibrcom |
|
31 |
|
absor |
|
32 |
17 30 31
|
mpjaod |
|
33 |
8 32
|
syl |
|
34 |
7 33
|
vtoclga |
|
35 |
2 34
|
syl |
|
36 |
3
|
zcnd |
|
37 |
36
|
adantr |
|
38 |
37
|
mul01d |
|
39 |
38
|
oveq2d |
|
40 |
2
|
zcnd |
|
41 |
|
zcn |
|
42 |
|
mulcl |
|
43 |
40 41 42
|
syl2an |
|
44 |
43
|
addid1d |
|
45 |
39 44
|
eqtrd |
|
46 |
45
|
eqeq2d |
|
47 |
|
0z |
|
48 |
|
oveq2 |
|
49 |
48
|
oveq2d |
|
50 |
49
|
rspceeqv |
|
51 |
47 50
|
mpan |
|
52 |
46 51
|
syl6bir |
|
53 |
52
|
reximdva |
|
54 |
35 53
|
mpd |
|
55 |
|
nnabscl |
|
56 |
55
|
ex |
|
57 |
2 56
|
syl |
|
58 |
|
eqeq1 |
|
59 |
58
|
2rexbidv |
|
60 |
59 1
|
elrab2 |
|
61 |
60
|
simplbi2com |
|
62 |
54 57 61
|
sylsyld |
|