Step |
Hyp |
Ref |
Expression |
1 |
|
bezout.1 |
|
2 |
|
bezout.3 |
|
3 |
|
bezout.4 |
|
4 |
|
bezout.2 |
|
5 |
|
bezout.5 |
|
6 |
1
|
ssrab3 |
|
7 |
|
nnuz |
|
8 |
6 7
|
sseqtri |
|
9 |
1 2 3
|
bezoutlem1 |
|
10 |
|
ne0i |
|
11 |
9 10
|
syl6 |
|
12 |
|
eqid |
|
13 |
12 3 2
|
bezoutlem1 |
|
14 |
|
rexcom |
|
15 |
2
|
zcnd |
|
16 |
15
|
adantr |
|
17 |
|
zcn |
|
18 |
17
|
ad2antll |
|
19 |
16 18
|
mulcld |
|
20 |
3
|
zcnd |
|
21 |
20
|
adantr |
|
22 |
|
zcn |
|
23 |
22
|
ad2antrl |
|
24 |
21 23
|
mulcld |
|
25 |
19 24
|
addcomd |
|
26 |
25
|
eqeq2d |
|
27 |
26
|
2rexbidva |
|
28 |
14 27
|
syl5bb |
|
29 |
28
|
rabbidv |
|
30 |
1 29
|
eqtrid |
|
31 |
30
|
eleq2d |
|
32 |
13 31
|
sylibrd |
|
33 |
|
ne0i |
|
34 |
32 33
|
syl6 |
|
35 |
|
neorian |
|
36 |
5 35
|
sylibr |
|
37 |
11 34 36
|
mpjaod |
|
38 |
|
infssuzcl |
|
39 |
8 37 38
|
sylancr |
|
40 |
4 39
|
eqeltrid |
|