Step |
Hyp |
Ref |
Expression |
1 |
|
bezout.1 |
|
2 |
|
bezout.3 |
|
3 |
|
bezout.4 |
|
4 |
|
bezout.2 |
|
5 |
|
bezout.5 |
|
6 |
|
gcddvds |
|
7 |
2 3 6
|
syl2anc |
|
8 |
7
|
simpld |
|
9 |
2 3
|
gcdcld |
|
10 |
9
|
nn0zd |
|
11 |
|
divides |
|
12 |
10 2 11
|
syl2anc |
|
13 |
8 12
|
mpbid |
|
14 |
7
|
simprd |
|
15 |
|
divides |
|
16 |
10 3 15
|
syl2anc |
|
17 |
14 16
|
mpbid |
|
18 |
|
reeanv |
|
19 |
1 2 3 4 5
|
bezoutlem2 |
|
20 |
|
oveq2 |
|
21 |
20
|
oveq1d |
|
22 |
21
|
eqeq2d |
|
23 |
|
oveq2 |
|
24 |
23
|
oveq2d |
|
25 |
24
|
eqeq2d |
|
26 |
22 25
|
cbvrex2vw |
|
27 |
|
eqeq1 |
|
28 |
27
|
2rexbidv |
|
29 |
26 28
|
syl5bb |
|
30 |
29 1
|
elrab2 |
|
31 |
19 30
|
sylib |
|
32 |
31
|
simprd |
|
33 |
|
simprrl |
|
34 |
|
simprll |
|
35 |
33 34
|
zmulcld |
|
36 |
|
simprrr |
|
37 |
|
simprlr |
|
38 |
36 37
|
zmulcld |
|
39 |
35 38
|
zaddcld |
|
40 |
10
|
adantr |
|
41 |
|
dvdsmul2 |
|
42 |
39 40 41
|
syl2anc |
|
43 |
35
|
zcnd |
|
44 |
40
|
zcnd |
|
45 |
38
|
zcnd |
|
46 |
33
|
zcnd |
|
47 |
34
|
zcnd |
|
48 |
46 47 44
|
mul32d |
|
49 |
36
|
zcnd |
|
50 |
37
|
zcnd |
|
51 |
49 50 44
|
mul32d |
|
52 |
48 51
|
oveq12d |
|
53 |
43 44 45 52
|
joinlmuladdmuld |
|
54 |
42 53
|
breqtrd |
|
55 |
|
oveq1 |
|
56 |
|
oveq1 |
|
57 |
55 56
|
oveqan12d |
|
58 |
57
|
breq2d |
|
59 |
54 58
|
syl5ibcom |
|
60 |
|
breq2 |
|
61 |
60
|
imbi2d |
|
62 |
59 61
|
syl5ibrcom |
|
63 |
62
|
expr |
|
64 |
63
|
com23 |
|
65 |
64
|
rexlimdvva |
|
66 |
32 65
|
mpd |
|
67 |
66
|
rexlimdvv |
|
68 |
18 67
|
syl5bir |
|
69 |
13 17 68
|
mp2and |
|
70 |
31
|
simpld |
|
71 |
|
dvdsle |
|
72 |
10 70 71
|
syl2anc |
|
73 |
69 72
|
mpd |
|
74 |
|
breq2 |
|
75 |
1 2 3
|
bezoutlem1 |
|
76 |
1 2 3 4 5
|
bezoutlem3 |
|
77 |
75 76
|
syld |
|
78 |
70
|
nnzd |
|
79 |
|
dvdsabsb |
|
80 |
78 2 79
|
syl2anc |
|
81 |
77 80
|
sylibrd |
|
82 |
81
|
imp |
|
83 |
|
dvds0 |
|
84 |
78 83
|
syl |
|
85 |
74 82 84
|
pm2.61ne |
|
86 |
|
breq2 |
|
87 |
|
eqid |
|
88 |
87 3 2
|
bezoutlem1 |
|
89 |
|
rexcom |
|
90 |
2
|
zcnd |
|
91 |
90
|
adantr |
|
92 |
|
zcn |
|
93 |
92
|
ad2antll |
|
94 |
91 93
|
mulcld |
|
95 |
3
|
zcnd |
|
96 |
95
|
adantr |
|
97 |
|
zcn |
|
98 |
97
|
ad2antrl |
|
99 |
96 98
|
mulcld |
|
100 |
94 99
|
addcomd |
|
101 |
100
|
eqeq2d |
|
102 |
101
|
2rexbidva |
|
103 |
89 102
|
syl5bb |
|
104 |
103
|
rabbidv |
|
105 |
1 104
|
eqtrid |
|
106 |
105
|
eleq2d |
|
107 |
88 106
|
sylibrd |
|
108 |
1 2 3 4 5
|
bezoutlem3 |
|
109 |
107 108
|
syld |
|
110 |
|
dvdsabsb |
|
111 |
78 3 110
|
syl2anc |
|
112 |
109 111
|
sylibrd |
|
113 |
112
|
imp |
|
114 |
86 113 84
|
pm2.61ne |
|
115 |
|
dvdslegcd |
|
116 |
78 2 3 5 115
|
syl31anc |
|
117 |
85 114 116
|
mp2and |
|
118 |
9
|
nn0red |
|
119 |
70
|
nnred |
|
120 |
118 119
|
letri3d |
|
121 |
73 117 120
|
mpbir2and |
|
122 |
121 19
|
eqeltrd |
|