Metamath Proof Explorer


Theorem bezoutr

Description: Partial converse to bezout . Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014)

Ref Expression
Assertion bezoutr A B X Y A gcd B A X + B Y

Proof

Step Hyp Ref Expression
1 gcdcl A B A gcd B 0
2 1 nn0zd A B A gcd B
3 2 adantr A B X Y A gcd B
4 simpll A B X Y A
5 simprl A B X Y X
6 4 5 zmulcld A B X Y A X
7 simplr A B X Y B
8 simprr A B X Y Y
9 7 8 zmulcld A B X Y B Y
10 gcddvds A B A gcd B A A gcd B B
11 10 adantr A B X Y A gcd B A A gcd B B
12 11 simpld A B X Y A gcd B A
13 3 4 5 12 dvdsmultr1d A B X Y A gcd B A X
14 11 simprd A B X Y A gcd B B
15 3 7 8 14 dvdsmultr1d A B X Y A gcd B B Y
16 3 6 9 13 15 dvds2addd A B X Y A gcd B A X + B Y