Step |
Hyp |
Ref |
Expression |
1 |
|
bezoutr |
|
2 |
1
|
adantr |
|
3 |
|
simpr |
|
4 |
2 3
|
breqtrd |
|
5 |
|
gcdcl |
|
6 |
5
|
nn0zd |
|
7 |
6
|
ad2antrr |
|
8 |
|
1nn |
|
9 |
8
|
a1i |
|
10 |
|
dvdsle |
|
11 |
7 9 10
|
syl2anc |
|
12 |
4 11
|
mpd |
|
13 |
|
simpll |
|
14 |
|
oveq1 |
|
15 |
|
oveq1 |
|
16 |
14 15
|
oveqan12d |
|
17 |
|
zcn |
|
18 |
17
|
mul02d |
|
19 |
|
zcn |
|
20 |
19
|
mul02d |
|
21 |
18 20
|
oveqan12d |
|
22 |
16 21
|
sylan9eqr |
|
23 |
|
00id |
|
24 |
22 23
|
eqtrdi |
|
25 |
24
|
adantll |
|
26 |
|
0ne1 |
|
27 |
26
|
a1i |
|
28 |
25 27
|
eqnetrd |
|
29 |
28
|
ex |
|
30 |
29
|
necon2bd |
|
31 |
30
|
imp |
|
32 |
|
gcdn0cl |
|
33 |
13 31 32
|
syl2anc |
|
34 |
|
nnle1eq1 |
|
35 |
33 34
|
syl |
|
36 |
12 35
|
mpbid |
|
37 |
36
|
ex |
|