Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
1
|
recnd |
|
3 |
|
ax-icn |
|
4 |
3
|
a1i |
|
5 |
|
simplr |
|
6 |
5
|
recnd |
|
7 |
4 6
|
mulcld |
|
8 |
2 7
|
addcld |
|
9 |
|
simprl |
|
10 |
9
|
recnd |
|
11 |
|
simprr |
|
12 |
11
|
recnd |
|
13 |
4 12
|
mulcld |
|
14 |
10 13
|
addcld |
|
15 |
8 14
|
mulcld |
|
16 |
15
|
replimd |
|
17 |
8 14
|
remuld |
|
18 |
1 5
|
crred |
|
19 |
9 11
|
crred |
|
20 |
18 19
|
oveq12d |
|
21 |
1 5
|
crimd |
|
22 |
9 11
|
crimd |
|
23 |
21 22
|
oveq12d |
|
24 |
20 23
|
oveq12d |
|
25 |
17 24
|
eqtrd |
|
26 |
8 14
|
immuld |
|
27 |
18 22
|
oveq12d |
|
28 |
21 19
|
oveq12d |
|
29 |
27 28
|
oveq12d |
|
30 |
26 29
|
eqtrd |
|
31 |
30
|
oveq2d |
|
32 |
25 31
|
oveq12d |
|
33 |
16 32
|
eqtrd |
|
34 |
33
|
fveq2d |
|
35 |
34
|
oveq1d |
|
36 |
8 14
|
absmuld |
|
37 |
36
|
oveq1d |
|
38 |
8
|
abscld |
|
39 |
38
|
recnd |
|
40 |
14
|
abscld |
|
41 |
40
|
recnd |
|
42 |
39 41
|
sqmuld |
|
43 |
|
absreimsq |
|
44 |
|
absreimsq |
|
45 |
43 44
|
oveqan12d |
|
46 |
37 42 45
|
3eqtrd |
|
47 |
1 9
|
remulcld |
|
48 |
5 11
|
remulcld |
|
49 |
47 48
|
resubcld |
|
50 |
1 11
|
remulcld |
|
51 |
5 9
|
remulcld |
|
52 |
50 51
|
readdcld |
|
53 |
|
absreimsq |
|
54 |
49 52 53
|
syl2anc |
|
55 |
35 46 54
|
3eqtr3d |
|