Metamath Proof Explorer


Theorem bhmafibid1

Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn , and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bhmafibid1 A B C D A 2 + B 2 C 2 + D 2 = A C B D 2 + A D + B C 2

Proof

Step Hyp Ref Expression
1 simpll A B C D A
2 1 recnd A B C D A
3 ax-icn i
4 3 a1i A B C D i
5 simplr A B C D B
6 5 recnd A B C D B
7 4 6 mulcld A B C D i B
8 2 7 addcld A B C D A + i B
9 simprl A B C D C
10 9 recnd A B C D C
11 simprr A B C D D
12 11 recnd A B C D D
13 4 12 mulcld A B C D i D
14 10 13 addcld A B C D C + i D
15 8 14 mulcld A B C D A + i B C + i D
16 15 replimd A B C D A + i B C + i D = A + i B C + i D + i A + i B C + i D
17 8 14 remuld A B C D A + i B C + i D = A + i B C + i D A + i B C + i D
18 1 5 crred A B C D A + i B = A
19 9 11 crred A B C D C + i D = C
20 18 19 oveq12d A B C D A + i B C + i D = A C
21 1 5 crimd A B C D A + i B = B
22 9 11 crimd A B C D C + i D = D
23 21 22 oveq12d A B C D A + i B C + i D = B D
24 20 23 oveq12d A B C D A + i B C + i D A + i B C + i D = A C B D
25 17 24 eqtrd A B C D A + i B C + i D = A C B D
26 8 14 immuld A B C D A + i B C + i D = A + i B C + i D + A + i B C + i D
27 18 22 oveq12d A B C D A + i B C + i D = A D
28 21 19 oveq12d A B C D A + i B C + i D = B C
29 27 28 oveq12d A B C D A + i B C + i D + A + i B C + i D = A D + B C
30 26 29 eqtrd A B C D A + i B C + i D = A D + B C
31 30 oveq2d A B C D i A + i B C + i D = i A D + B C
32 25 31 oveq12d A B C D A + i B C + i D + i A + i B C + i D = A C - B D + i A D + B C
33 16 32 eqtrd A B C D A + i B C + i D = A C - B D + i A D + B C
34 33 fveq2d A B C D A + i B C + i D = A C - B D + i A D + B C
35 34 oveq1d A B C D A + i B C + i D 2 = A C - B D + i A D + B C 2
36 8 14 absmuld A B C D A + i B C + i D = A + i B C + i D
37 36 oveq1d A B C D A + i B C + i D 2 = A + i B C + i D 2
38 8 abscld A B C D A + i B
39 38 recnd A B C D A + i B
40 14 abscld A B C D C + i D
41 40 recnd A B C D C + i D
42 39 41 sqmuld A B C D A + i B C + i D 2 = A + i B 2 C + i D 2
43 absreimsq A B A + i B 2 = A 2 + B 2
44 absreimsq C D C + i D 2 = C 2 + D 2
45 43 44 oveqan12d A B C D A + i B 2 C + i D 2 = A 2 + B 2 C 2 + D 2
46 37 42 45 3eqtrd A B C D A + i B C + i D 2 = A 2 + B 2 C 2 + D 2
47 1 9 remulcld A B C D A C
48 5 11 remulcld A B C D B D
49 47 48 resubcld A B C D A C B D
50 1 11 remulcld A B C D A D
51 5 9 remulcld A B C D B C
52 50 51 readdcld A B C D A D + B C
53 absreimsq A C B D A D + B C A C - B D + i A D + B C 2 = A C B D 2 + A D + B C 2
54 49 52 53 syl2anc A B C D A C - B D + i A D + B C 2 = A C B D 2 + A D + B C 2
55 35 46 54 3eqtr3d A B C D A 2 + B 2 C 2 + D 2 = A C B D 2 + A D + B C 2