Description: The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bhmafibid1cn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | 1 | sqcld | |
3 | simprl | |
|
4 | 3 | sqcld | |
5 | 2 4 | mulcld | |
6 | simprr | |
|
7 | 6 | sqcld | |
8 | simplr | |
|
9 | 8 | sqcld | |
10 | 7 9 | mulcld | |
11 | 2 7 | mulcld | |
12 | 4 9 | mulcld | |
13 | 5 10 11 12 | add4d | |
14 | 7 9 | mulcomd | |
15 | 4 9 | mulcomd | |
16 | 14 15 | oveq12d | |
17 | 16 | oveq2d | |
18 | 13 17 | eqtrd | |
19 | 2 9 4 7 | muladdd | |
20 | 1 3 | mulcld | |
21 | 8 6 | mulcld | |
22 | binom2sub | |
|
23 | 20 21 22 | syl2anc | |
24 | 1 6 | mulcld | |
25 | 8 3 | mulcld | |
26 | binom2 | |
|
27 | 24 25 26 | syl2anc | |
28 | 23 27 | oveq12d | |
29 | 20 | sqcld | |
30 | 2cnd | |
|
31 | 20 21 | mulcld | |
32 | 30 31 | mulcld | |
33 | 29 32 | subcld | |
34 | 21 | sqcld | |
35 | 24 | sqcld | |
36 | 24 25 | mulcld | |
37 | 30 36 | mulcld | |
38 | 35 37 | addcld | |
39 | 25 | sqcld | |
40 | 33 34 38 39 | add4d | |
41 | mul4r | |
|
42 | 41 | an4s | |
43 | 42 | oveq2d | |
44 | 43 | oveq2d | |
45 | 44 | oveq1d | |
46 | 29 37 35 | nppcan3d | |
47 | 45 46 | eqtrd | |
48 | 8 6 | sqmuld | |
49 | 8 3 | sqmuld | |
50 | 48 49 | oveq12d | |
51 | 47 50 | oveq12d | |
52 | 1 3 | sqmuld | |
53 | 1 6 | sqmuld | |
54 | 52 53 | oveq12d | |
55 | 54 | oveq1d | |
56 | 51 55 | eqtrd | |
57 | 28 40 56 | 3eqtrd | |
58 | 18 19 57 | 3eqtr4d | |