Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
1
|
sqcld |
|
3 |
|
simprl |
|
4 |
3
|
sqcld |
|
5 |
2 4
|
mulcld |
|
6 |
|
simprr |
|
7 |
6
|
sqcld |
|
8 |
|
simplr |
|
9 |
8
|
sqcld |
|
10 |
7 9
|
mulcld |
|
11 |
2 7
|
mulcld |
|
12 |
4 9
|
mulcld |
|
13 |
5 10 11 12
|
add4d |
|
14 |
7 9
|
mulcomd |
|
15 |
4 9
|
mulcomd |
|
16 |
14 15
|
oveq12d |
|
17 |
16
|
oveq2d |
|
18 |
13 17
|
eqtrd |
|
19 |
2 9 4 7
|
muladdd |
|
20 |
1 3
|
mulcld |
|
21 |
8 6
|
mulcld |
|
22 |
|
binom2 |
|
23 |
20 21 22
|
syl2anc |
|
24 |
1 6
|
mulcld |
|
25 |
8 3
|
mulcld |
|
26 |
|
binom2sub |
|
27 |
24 25 26
|
syl2anc |
|
28 |
23 27
|
oveq12d |
|
29 |
20
|
sqcld |
|
30 |
|
2cnd |
|
31 |
20 21
|
mulcld |
|
32 |
30 31
|
mulcld |
|
33 |
29 32
|
addcld |
|
34 |
21
|
sqcld |
|
35 |
24
|
sqcld |
|
36 |
24 25
|
mulcld |
|
37 |
30 36
|
mulcld |
|
38 |
35 37
|
subcld |
|
39 |
25
|
sqcld |
|
40 |
33 34 38 39
|
add4d |
|
41 |
|
mul4r |
|
42 |
41
|
an4s |
|
43 |
42
|
oveq2d |
|
44 |
43
|
oveq2d |
|
45 |
44
|
oveq1d |
|
46 |
29 37 35
|
ppncand |
|
47 |
45 46
|
eqtrd |
|
48 |
8 6
|
sqmuld |
|
49 |
8 3
|
sqmuld |
|
50 |
48 49
|
oveq12d |
|
51 |
47 50
|
oveq12d |
|
52 |
1 3
|
sqmuld |
|
53 |
1 6
|
sqmuld |
|
54 |
52 53
|
oveq12d |
|
55 |
54
|
oveq1d |
|
56 |
51 55
|
eqtrd |
|
57 |
28 40 56
|
3eqtrd |
|
58 |
18 19 57
|
3eqtr4d |
|