Metamath Proof Explorer


Theorem bi2anan9r

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996)

Ref Expression
Hypotheses bi2an9.1 φ ψ χ
bi2an9.2 θ τ η
Assertion bi2anan9r θ φ ψ τ χ η

Proof

Step Hyp Ref Expression
1 bi2an9.1 φ ψ χ
2 bi2an9.2 θ τ η
3 1 2 bi2anan9 φ θ ψ τ χ η
4 3 ancoms θ φ ψ τ χ η