Metamath Proof Explorer


Theorem bi2bian9

Description: Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004)

Ref Expression
Hypotheses bi2an9.1 φ ψ χ
bi2an9.2 θ τ η
Assertion bi2bian9 φ θ ψ τ χ η

Proof

Step Hyp Ref Expression
1 bi2an9.1 φ ψ χ
2 bi2an9.2 θ τ η
3 1 adantr φ θ ψ χ
4 2 adantl φ θ τ η
5 3 4 bibi12d φ θ ψ τ χ η