Metamath Proof Explorer


Theorem biadan

Description: An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii and elelb . (Contributed by BJ, 4-Mar-2023) (Proof shortened by Wolf Lammen, 8-Mar-2023)

Ref Expression
Assertion biadan φ ψ ψ φ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 pm4.71r φ ψ φ ψ φ
2 bicom φ ψ φ ψ φ φ
3 bicom φ ψ χ ψ χ φ
4 pm5.32 ψ φ χ ψ φ ψ χ
5 3 4 bibi12i φ ψ χ ψ φ χ ψ χ φ ψ φ ψ χ
6 bicom ψ φ χ φ ψ χ φ ψ χ ψ φ χ
7 biluk ψ φ φ ψ χ φ ψ φ ψ χ
8 5 6 7 3bitr4ri ψ φ φ ψ φ χ φ ψ χ
9 1 2 8 3bitri φ ψ ψ φ χ φ ψ χ