Metamath Proof Explorer


Theorem biadaniALT

Description: Alternate proof of biadani not using biadan . (Contributed by BJ, 4-Mar-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis biadani.1 φ ψ
Assertion biadaniALT ψ φ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 biadani.1 φ ψ
2 pm5.32 ψ φ χ ψ φ ψ χ
3 1 pm4.71ri φ ψ φ
4 3 bibi1i φ ψ χ ψ φ ψ χ
5 2 4 bitr4i ψ φ χ φ ψ χ