Metamath Proof Explorer
Description: Deduction associated with biadani . Add a conjunction to an
equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024)
|
|
Ref |
Expression |
|
Hypotheses |
biadanid.1 |
|
|
|
biadanid.2 |
|
|
Assertion |
biadanid |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
biadanid.1 |
|
2 |
|
biadanid.2 |
|
3 |
2
|
biimpa |
|
4 |
3
|
an32s |
|
5 |
1 4
|
mpdan |
|
6 |
1 5
|
jca |
|
7 |
2
|
biimpar |
|
8 |
7
|
anasss |
|
9 |
6 8
|
impbida |
|