Metamath Proof Explorer


Theorem biadanid

Description: Deduction associated with biadani . Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses biadanid.1 φ ψ χ
biadanid.2 φ χ ψ θ
Assertion biadanid φ ψ χ θ

Proof

Step Hyp Ref Expression
1 biadanid.1 φ ψ χ
2 biadanid.2 φ χ ψ θ
3 2 biimpa φ χ ψ θ
4 3 an32s φ ψ χ θ
5 1 4 mpdan φ ψ θ
6 1 5 jca φ ψ χ θ
7 2 biimpar φ χ θ ψ
8 7 anasss φ χ θ ψ
9 6 8 impbida φ ψ χ θ