Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Propositional Calculus - misc additions
bian1d
Metamath Proof Explorer
Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux , 26-Feb-2017) (Proof shortened by Hongxiu Chen , 29-Jun-2025)
Ref
Expression
Hypothesis
bian1d.1
⊢ φ → ψ ↔ χ ∧ θ
Assertion
bian1d
⊢ φ → χ ∧ ψ ↔ χ ∧ θ
Proof
Step
Hyp
Ref
Expression
1
bian1d.1
⊢ φ → ψ ↔ χ ∧ θ
2
ibar
⊢ χ → θ ↔ χ ∧ θ
3
2
bicomd
⊢ χ → χ ∧ θ ↔ θ
4
1 3
sylan9bb
⊢ φ ∧ χ → ψ ↔ θ
5
4
ex
⊢ φ → χ → ψ ↔ θ
6
5
pm5.32d
⊢ φ → χ ∧ ψ ↔ χ ∧ θ