Metamath Proof Explorer


Theorem bian1d

Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017) (Proof shortened by Hongxiu Chen, 29-Jun-2025)

Ref Expression
Hypothesis bian1d.1 φ ψ χ θ
Assertion bian1d φ χ ψ χ θ

Proof

Step Hyp Ref Expression
1 bian1d.1 φ ψ χ θ
2 ibar χ θ χ θ
3 2 bicomd χ χ θ θ
4 1 3 sylan9bb φ χ ψ θ
5 4 ex φ χ ψ θ
6 5 pm5.32d φ χ ψ χ θ