Metamath Proof Explorer


Theorem bian1d

Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017)

Ref Expression
Hypothesis bian1d.1 φ ψ χ θ
Assertion bian1d φ χ ψ χ θ

Proof

Step Hyp Ref Expression
1 bian1d.1 φ ψ χ θ
2 1 biimpd φ ψ χ θ
3 2 adantld φ χ ψ χ θ
4 simpl χ θ χ
5 4 a1i φ χ θ χ
6 1 biimprd φ χ θ ψ
7 5 6 jcad φ χ θ χ ψ
8 3 7 impbid φ χ ψ χ θ