Metamath Proof Explorer


Theorem bianfi

Description: A wff conjoined with falsehood is false. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 26-Nov-2012)

Ref Expression
Hypothesis bianfi.1 ¬ φ
Assertion bianfi φ ψ φ

Proof

Step Hyp Ref Expression
1 bianfi.1 ¬ φ
2 1 intnan ¬ ψ φ
3 1 2 2false φ ψ φ