Metamath Proof Explorer


Theorem bianim

Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023)

Ref Expression
Hypotheses bianim.1 φ ψ χ
bianim.2 χ ψ θ
Assertion bianim φ θ χ

Proof

Step Hyp Ref Expression
1 bianim.1 φ ψ χ
2 bianim.2 χ ψ θ
3 2 pm5.32ri ψ χ θ χ
4 1 3 bitri φ θ χ