Metamath Proof Explorer
		
		
		
		Description:  Eliminate an hypothesis th in a biconditional.  (Contributed by Thierry Arnoux, 4-May-2025)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						bibiad.1 | 
						   | 
					
					
						 | 
						 | 
						bibiad.2 | 
						   | 
					
					
						 | 
						 | 
						bibiad.3 | 
						   | 
					
				
					 | 
					Assertion | 
					bibiad | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bibiad.1 | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							bibiad.2 | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							bibiad.3 | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							   | 
						
						
							| 6 | 
							
								3
							 | 
							biimpa | 
							   | 
						
						
							| 7 | 
							
								4 1 5 6
							 | 
							syl21anc | 
							   | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							   | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							   | 
						
						
							| 10 | 
							
								3
							 | 
							biimpar | 
							   | 
						
						
							| 11 | 
							
								8 2 9 10
							 | 
							syl21anc | 
							   | 
						
						
							| 12 | 
							
								7 11
							 | 
							impbida | 
							   |