Metamath Proof Explorer


Theorem bibiad

Description: Eliminate an hypothesis th in a biconditional. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses bibiad.1 φ ψ θ
bibiad.2 φ χ θ
bibiad.3 φ θ ψ χ
Assertion bibiad φ ψ χ

Proof

Step Hyp Ref Expression
1 bibiad.1 φ ψ θ
2 bibiad.2 φ χ θ
3 bibiad.3 φ θ ψ χ
4 simpl φ ψ φ
5 simpr φ ψ ψ
6 3 biimpa φ θ ψ χ
7 4 1 5 6 syl21anc φ ψ χ
8 simpl φ χ φ
9 simpr φ χ χ
10 3 biimpar φ θ χ ψ
11 8 2 9 10 syl21anc φ χ ψ
12 7 11 impbida φ ψ χ