Metamath Proof Explorer


Theorem biimp

Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999)

Ref Expression
Assertion biimp φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 df-bi ¬ φ ψ ¬ φ ψ ¬ ψ φ ¬ ¬ φ ψ ¬ ψ φ φ ψ
2 simplim ¬ φ ψ ¬ φ ψ ¬ ψ φ ¬ ¬ φ ψ ¬ ψ φ φ ψ φ ψ ¬ φ ψ ¬ ψ φ
3 1 2 ax-mp φ ψ ¬ φ ψ ¬ ψ φ
4 simplim ¬ φ ψ ¬ ψ φ φ ψ
5 3 4 syl φ ψ φ ψ