Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
biimp
Next ⟩
biimpi
Metamath Proof Explorer
Ascii
Unicode
Theorem
biimp
Description:
Property of the biconditional connective.
(Contributed by
NM
, 11-May-1999)
Ref
Expression
Assertion
biimp
⊢
φ
↔
ψ
→
φ
→
ψ
Proof
Step
Hyp
Ref
Expression
1
df-bi
⊢
¬
φ
↔
ψ
→
¬
φ
→
ψ
→
¬
ψ
→
φ
→
¬
¬
φ
→
ψ
→
¬
ψ
→
φ
→
φ
↔
ψ
2
simplim
⊢
¬
φ
↔
ψ
→
¬
φ
→
ψ
→
¬
ψ
→
φ
→
¬
¬
φ
→
ψ
→
¬
ψ
→
φ
→
φ
↔
ψ
→
φ
↔
ψ
→
¬
φ
→
ψ
→
¬
ψ
→
φ
3
1
2
ax-mp
⊢
φ
↔
ψ
→
¬
φ
→
ψ
→
¬
ψ
→
φ
4
simplim
⊢
¬
φ
→
ψ
→
¬
ψ
→
φ
→
φ
→
ψ
5
3
4
syl
⊢
φ
↔
ψ
→
φ
→
ψ