Metamath Proof Explorer


Theorem biimparc

Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994)

Ref Expression
Hypothesis biimpa.1 φ ψ χ
Assertion biimparc χ φ ψ

Proof

Step Hyp Ref Expression
1 biimpa.1 φ ψ χ
2 1 biimprcd χ φ ψ
3 2 imp χ φ ψ