Metamath Proof Explorer


Theorem biimt

Description: A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996)

Ref Expression
Assertion biimt φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 ax-1 ψ φ ψ
2 pm2.27 φ φ ψ ψ
3 1 2 impbid2 φ ψ φ ψ