Metamath Proof Explorer


Theorem biimtrdi

Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994)

Ref Expression
Hypotheses biimtrdi.1 φ ψ χ
biimtrdi.2 χ θ
Assertion biimtrdi φ ψ θ

Proof

Step Hyp Ref Expression
1 biimtrdi.1 φ ψ χ
2 biimtrdi.2 χ θ
3 1 biimpd φ ψ χ
4 3 2 syl6 φ ψ θ