Metamath Proof Explorer


Theorem biimtrdi

Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994)

Ref Expression
Hypotheses biimtrdi.1 φψχ
biimtrdi.2 χθ
Assertion biimtrdi φψθ

Proof

Step Hyp Ref Expression
1 biimtrdi.1 φψχ
2 biimtrdi.2 χθ
3 1 biimpd φψχ
4 3 2 syl6 φψθ