Metamath Proof Explorer


Theorem biimtrrdi

Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses biimtrrdi.1 φ χ ψ
biimtrrdi.2 χ θ
Assertion biimtrrdi φ ψ θ

Proof

Step Hyp Ref Expression
1 biimtrrdi.1 φ χ ψ
2 biimtrrdi.2 χ θ
3 1 biimprd φ ψ χ
4 3 2 syl6 φ ψ θ