Metamath Proof Explorer


Theorem bija

Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja , is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im and pm5.21im ). (Contributed by Wolf Lammen, 13-May-2013)

Ref Expression
Hypotheses bija.1 φ ψ χ
bija.2 ¬ φ ¬ ψ χ
Assertion bija φ ψ χ

Proof

Step Hyp Ref Expression
1 bija.1 φ ψ χ
2 bija.2 ¬ φ ¬ ψ χ
3 biimpr φ ψ ψ φ
4 3 1 syli φ ψ ψ χ
5 biimp φ ψ φ ψ
6 5 con3d φ ψ ¬ ψ ¬ φ
7 6 2 syli φ ψ ¬ ψ χ
8 4 7 pm2.61d φ ψ χ