Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
|
oveq1 |
|
4 |
|
oveq1 |
|
5 |
4
|
oveq2d |
|
6 |
5
|
oveq1d |
|
7 |
3 6
|
oveq12d |
|
8 |
7
|
adantr |
|
9 |
2 8
|
sumeq12dv |
|
10 |
1 9
|
eqeq12d |
|
11 |
10
|
imbi2d |
|
12 |
|
oveq2 |
|
13 |
|
oveq2 |
|
14 |
|
oveq1 |
|
15 |
|
oveq1 |
|
16 |
15
|
oveq2d |
|
17 |
16
|
oveq1d |
|
18 |
14 17
|
oveq12d |
|
19 |
18
|
adantr |
|
20 |
13 19
|
sumeq12dv |
|
21 |
12 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
oveq2 |
|
24 |
|
oveq2 |
|
25 |
|
oveq1 |
|
26 |
|
oveq1 |
|
27 |
26
|
oveq2d |
|
28 |
27
|
oveq1d |
|
29 |
25 28
|
oveq12d |
|
30 |
29
|
adantr |
|
31 |
24 30
|
sumeq12dv |
|
32 |
23 31
|
eqeq12d |
|
33 |
32
|
imbi2d |
|
34 |
|
oveq2 |
|
35 |
|
oveq2 |
|
36 |
|
oveq1 |
|
37 |
|
oveq1 |
|
38 |
37
|
oveq2d |
|
39 |
38
|
oveq1d |
|
40 |
36 39
|
oveq12d |
|
41 |
40
|
adantr |
|
42 |
35 41
|
sumeq12dv |
|
43 |
34 42
|
eqeq12d |
|
44 |
43
|
imbi2d |
|
45 |
|
exp0 |
|
46 |
|
exp0 |
|
47 |
45 46
|
oveqan12d |
|
48 |
|
1t1e1 |
|
49 |
47 48
|
eqtrdi |
|
50 |
49
|
oveq2d |
|
51 |
50 48
|
eqtrdi |
|
52 |
|
0z |
|
53 |
|
ax-1cn |
|
54 |
51 53
|
eqeltrdi |
|
55 |
|
oveq2 |
|
56 |
|
0nn0 |
|
57 |
|
bcn0 |
|
58 |
56 57
|
ax-mp |
|
59 |
55 58
|
eqtrdi |
|
60 |
|
oveq2 |
|
61 |
|
0m0e0 |
|
62 |
60 61
|
eqtrdi |
|
63 |
62
|
oveq2d |
|
64 |
|
oveq2 |
|
65 |
63 64
|
oveq12d |
|
66 |
59 65
|
oveq12d |
|
67 |
66
|
fsum1 |
|
68 |
52 54 67
|
sylancr |
|
69 |
|
addcl |
|
70 |
69
|
exp0d |
|
71 |
51 68 70
|
3eqtr4rd |
|
72 |
|
simprl |
|
73 |
|
simprr |
|
74 |
|
simpl |
|
75 |
|
id |
|
76 |
72 73 74 75
|
binomlem |
|
77 |
76
|
exp31 |
|
78 |
77
|
a2d |
|
79 |
11 22 33 44 71 78
|
nn0ind |
|
80 |
79
|
impcom |
|
81 |
80
|
3impa |
|