Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
fzssp1 |
|
3 |
|
nn0cn |
|
4 |
3
|
adantl |
|
5 |
|
ax-1cn |
|
6 |
|
npcan |
|
7 |
4 5 6
|
sylancl |
|
8 |
7
|
oveq2d |
|
9 |
2 8
|
sseqtrid |
|
10 |
9
|
sselda |
|
11 |
|
bccl2 |
|
12 |
11
|
adantl |
|
13 |
12
|
nncnd |
|
14 |
|
simpl |
|
15 |
|
elfznn0 |
|
16 |
|
expcl |
|
17 |
14 15 16
|
syl2an |
|
18 |
13 17
|
mulcld |
|
19 |
10 18
|
syldan |
|
20 |
1 19
|
fsumcl |
|
21 |
|
expcl |
|
22 |
|
addcom |
|
23 |
14 5 22
|
sylancl |
|
24 |
23
|
oveq1d |
|
25 |
|
binom1p |
|
26 |
|
simpr |
|
27 |
|
nn0uz |
|
28 |
26 27
|
eleqtrdi |
|
29 |
|
oveq2 |
|
30 |
|
oveq2 |
|
31 |
29 30
|
oveq12d |
|
32 |
28 18 31
|
fsumm1 |
|
33 |
|
bcnn |
|
34 |
33
|
adantl |
|
35 |
34
|
oveq1d |
|
36 |
21
|
mulid2d |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
32 38
|
eqtrd |
|
40 |
24 25 39
|
3eqtrd |
|
41 |
20 21 40
|
mvrraddd |
|