Metamath Proof Explorer


Theorem binom21

Description: Special case of binom2 where B = 1 . (Contributed by Scott Fenton, 11-May-2014)

Ref Expression
Assertion binom21 A A + 1 2 = A 2 + 2 A + 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 binom2 A 1 A + 1 2 = A 2 + 2 A 1 + 1 2
3 1 2 mpan2 A A + 1 2 = A 2 + 2 A 1 + 1 2
4 mulid1 A A 1 = A
5 4 oveq2d A 2 A 1 = 2 A
6 5 oveq2d A A 2 + 2 A 1 = A 2 + 2 A
7 sq1 1 2 = 1
8 7 a1i A 1 2 = 1
9 6 8 oveq12d A A 2 + 2 A 1 + 1 2 = A 2 + 2 A + 1
10 3 9 eqtrd A A + 1 2 = A 2 + 2 A + 1