Metamath Proof Explorer


Theorem binom2sub1

Description: Special case of binom2sub where B = 1 . (Contributed by AV, 2-Aug-2021)

Ref Expression
Assertion binom2sub1 A A 1 2 = A 2 - 2 A + 1

Proof

Step Hyp Ref Expression
1 1cnd A 1
2 binom2sub A 1 A 1 2 = A 2 - 2 A 1 + 1 2
3 1 2 mpdan A A 1 2 = A 2 - 2 A 1 + 1 2
4 mulid1 A A 1 = A
5 4 oveq2d A 2 A 1 = 2 A
6 5 oveq2d A A 2 2 A 1 = A 2 2 A
7 sq1 1 2 = 1
8 7 a1i A 1 2 = 1
9 6 8 oveq12d A A 2 - 2 A 1 + 1 2 = A 2 - 2 A + 1
10 3 9 eqtrd A A 1 2 = A 2 - 2 A + 1