Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
|
fz0sn |
|
4 |
2 3
|
eqtrdi |
|
5 |
|
oveq1 |
|
6 |
|
oveq1 |
|
7 |
6
|
oveq2d |
|
8 |
7
|
oveq1d |
|
9 |
5 8
|
oveq12d |
|
10 |
9
|
adantr |
|
11 |
4 10
|
sumeq12dv |
|
12 |
1 11
|
eqeq12d |
|
13 |
12
|
imbi2d |
|
14 |
|
oveq2 |
|
15 |
|
oveq2 |
|
16 |
|
oveq1 |
|
17 |
|
oveq1 |
|
18 |
17
|
oveq2d |
|
19 |
18
|
oveq1d |
|
20 |
16 19
|
oveq12d |
|
21 |
20
|
adantr |
|
22 |
15 21
|
sumeq12dv |
|
23 |
14 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
|
oveq2 |
|
26 |
|
oveq2 |
|
27 |
|
oveq1 |
|
28 |
|
oveq1 |
|
29 |
28
|
oveq2d |
|
30 |
29
|
oveq1d |
|
31 |
27 30
|
oveq12d |
|
32 |
31
|
adantr |
|
33 |
26 32
|
sumeq12dv |
|
34 |
25 33
|
eqeq12d |
|
35 |
34
|
imbi2d |
|
36 |
|
oveq2 |
|
37 |
|
oveq2 |
|
38 |
|
oveq1 |
|
39 |
|
oveq1 |
|
40 |
39
|
oveq2d |
|
41 |
40
|
oveq1d |
|
42 |
38 41
|
oveq12d |
|
43 |
42
|
adantr |
|
44 |
37 43
|
sumeq12dv |
|
45 |
36 44
|
eqeq12d |
|
46 |
45
|
imbi2d |
|
47 |
|
fallfac0 |
|
48 |
|
fallfac0 |
|
49 |
47 48
|
oveqan12d |
|
50 |
|
1t1e1 |
|
51 |
49 50
|
eqtrdi |
|
52 |
51
|
oveq2d |
|
53 |
52 50
|
eqtrdi |
|
54 |
|
0cn |
|
55 |
|
ax-1cn |
|
56 |
53 55
|
eqeltrdi |
|
57 |
|
oveq2 |
|
58 |
|
0nn0 |
|
59 |
|
bcnn |
|
60 |
58 59
|
ax-mp |
|
61 |
57 60
|
eqtrdi |
|
62 |
|
oveq2 |
|
63 |
|
0m0e0 |
|
64 |
62 63
|
eqtrdi |
|
65 |
64
|
oveq2d |
|
66 |
|
oveq2 |
|
67 |
65 66
|
oveq12d |
|
68 |
61 67
|
oveq12d |
|
69 |
68
|
sumsn |
|
70 |
54 56 69
|
sylancr |
|
71 |
|
addcl |
|
72 |
|
fallfac0 |
|
73 |
71 72
|
syl |
|
74 |
53 70 73
|
3eqtr4rd |
|
75 |
|
simprl |
|
76 |
|
simprr |
|
77 |
|
simpl |
|
78 |
|
id |
|
79 |
75 76 77 78
|
binomfallfaclem2 |
|
80 |
79
|
exp31 |
|
81 |
80
|
a2d |
|
82 |
13 24 35 46 74 81
|
nn0ind |
|
83 |
82
|
com12 |
|
84 |
83
|
3impia |
|