| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
|
fz0sn |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
|
oveq1 |
|
| 6 |
|
oveq1 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
7
|
oveq1d |
|
| 9 |
5 8
|
oveq12d |
|
| 10 |
9
|
adantr |
|
| 11 |
4 10
|
sumeq12dv |
|
| 12 |
1 11
|
eqeq12d |
|
| 13 |
12
|
imbi2d |
|
| 14 |
|
oveq2 |
|
| 15 |
|
oveq2 |
|
| 16 |
|
oveq1 |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
18
|
oveq1d |
|
| 20 |
16 19
|
oveq12d |
|
| 21 |
20
|
adantr |
|
| 22 |
15 21
|
sumeq12dv |
|
| 23 |
14 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
oveq2 |
|
| 26 |
|
oveq2 |
|
| 27 |
|
oveq1 |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
oveq1d |
|
| 31 |
27 30
|
oveq12d |
|
| 32 |
31
|
adantr |
|
| 33 |
26 32
|
sumeq12dv |
|
| 34 |
25 33
|
eqeq12d |
|
| 35 |
34
|
imbi2d |
|
| 36 |
|
oveq2 |
|
| 37 |
|
oveq2 |
|
| 38 |
|
oveq1 |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
oveq1d |
|
| 42 |
38 41
|
oveq12d |
|
| 43 |
42
|
adantr |
|
| 44 |
37 43
|
sumeq12dv |
|
| 45 |
36 44
|
eqeq12d |
|
| 46 |
45
|
imbi2d |
|
| 47 |
|
fallfac0 |
|
| 48 |
|
fallfac0 |
|
| 49 |
47 48
|
oveqan12d |
|
| 50 |
|
1t1e1 |
|
| 51 |
49 50
|
eqtrdi |
|
| 52 |
51
|
oveq2d |
|
| 53 |
52 50
|
eqtrdi |
|
| 54 |
|
0cn |
|
| 55 |
|
ax-1cn |
|
| 56 |
53 55
|
eqeltrdi |
|
| 57 |
|
oveq2 |
|
| 58 |
|
0nn0 |
|
| 59 |
|
bcnn |
|
| 60 |
58 59
|
ax-mp |
|
| 61 |
57 60
|
eqtrdi |
|
| 62 |
|
oveq2 |
|
| 63 |
|
0m0e0 |
|
| 64 |
62 63
|
eqtrdi |
|
| 65 |
64
|
oveq2d |
|
| 66 |
|
oveq2 |
|
| 67 |
65 66
|
oveq12d |
|
| 68 |
61 67
|
oveq12d |
|
| 69 |
68
|
sumsn |
|
| 70 |
54 56 69
|
sylancr |
|
| 71 |
|
addcl |
|
| 72 |
|
fallfac0 |
|
| 73 |
71 72
|
syl |
|
| 74 |
53 70 73
|
3eqtr4rd |
|
| 75 |
|
simprl |
|
| 76 |
|
simprr |
|
| 77 |
|
simpl |
|
| 78 |
|
id |
|
| 79 |
75 76 77 78
|
binomfallfaclem2 |
|
| 80 |
79
|
exp31 |
|
| 81 |
80
|
a2d |
|
| 82 |
13 24 35 46 74 81
|
nn0ind |
|
| 83 |
82
|
com12 |
|
| 84 |
83
|
3impia |
|