Metamath Proof Explorer


Theorem binomfallfac

Description: A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018)

Ref Expression
Assertion binomfallfac A B N 0 A + B N _ = k = 0 N ( N k) A N k _ B k _

Proof

Step Hyp Ref Expression
1 oveq2 m = 0 A + B m _ = A + B 0 _
2 oveq2 m = 0 0 m = 0 0
3 fz0sn 0 0 = 0
4 2 3 eqtrdi m = 0 0 m = 0
5 oveq1 m = 0 ( m k) = ( 0 k)
6 oveq1 m = 0 m k = 0 k
7 6 oveq2d m = 0 A m k _ = A 0 k _
8 7 oveq1d m = 0 A m k _ B k _ = A 0 k _ B k _
9 5 8 oveq12d m = 0 ( m k) A m k _ B k _ = ( 0 k) A 0 k _ B k _
10 9 adantr m = 0 k 0 m ( m k) A m k _ B k _ = ( 0 k) A 0 k _ B k _
11 4 10 sumeq12dv m = 0 k = 0 m ( m k) A m k _ B k _ = k 0 ( 0 k) A 0 k _ B k _
12 1 11 eqeq12d m = 0 A + B m _ = k = 0 m ( m k) A m k _ B k _ A + B 0 _ = k 0 ( 0 k) A 0 k _ B k _
13 12 imbi2d m = 0 A B A + B m _ = k = 0 m ( m k) A m k _ B k _ A B A + B 0 _ = k 0 ( 0 k) A 0 k _ B k _
14 oveq2 m = n A + B m _ = A + B n _
15 oveq2 m = n 0 m = 0 n
16 oveq1 m = n ( m k) = ( n k)
17 oveq1 m = n m k = n k
18 17 oveq2d m = n A m k _ = A n k _
19 18 oveq1d m = n A m k _ B k _ = A n k _ B k _
20 16 19 oveq12d m = n ( m k) A m k _ B k _ = ( n k) A n k _ B k _
21 20 adantr m = n k 0 m ( m k) A m k _ B k _ = ( n k) A n k _ B k _
22 15 21 sumeq12dv m = n k = 0 m ( m k) A m k _ B k _ = k = 0 n ( n k) A n k _ B k _
23 14 22 eqeq12d m = n A + B m _ = k = 0 m ( m k) A m k _ B k _ A + B n _ = k = 0 n ( n k) A n k _ B k _
24 23 imbi2d m = n A B A + B m _ = k = 0 m ( m k) A m k _ B k _ A B A + B n _ = k = 0 n ( n k) A n k _ B k _
25 oveq2 m = n + 1 A + B m _ = A + B n + 1 _
26 oveq2 m = n + 1 0 m = 0 n + 1
27 oveq1 m = n + 1 ( m k) = ( n + 1 k)
28 oveq1 m = n + 1 m k = n + 1 - k
29 28 oveq2d m = n + 1 A m k _ = A n + 1 - k _
30 29 oveq1d m = n + 1 A m k _ B k _ = A n + 1 - k _ B k _
31 27 30 oveq12d m = n + 1 ( m k) A m k _ B k _ = ( n + 1 k) A n + 1 - k _ B k _
32 31 adantr m = n + 1 k 0 m ( m k) A m k _ B k _ = ( n + 1 k) A n + 1 - k _ B k _
33 26 32 sumeq12dv m = n + 1 k = 0 m ( m k) A m k _ B k _ = k = 0 n + 1 ( n + 1 k) A n + 1 - k _ B k _
34 25 33 eqeq12d m = n + 1 A + B m _ = k = 0 m ( m k) A m k _ B k _ A + B n + 1 _ = k = 0 n + 1 ( n + 1 k) A n + 1 - k _ B k _
35 34 imbi2d m = n + 1 A B A + B m _ = k = 0 m ( m k) A m k _ B k _ A B A + B n + 1 _ = k = 0 n + 1 ( n + 1 k) A n + 1 - k _ B k _
36 oveq2 m = N A + B m _ = A + B N _
37 oveq2 m = N 0 m = 0 N
38 oveq1 m = N ( m k) = ( N k)
39 oveq1 m = N m k = N k
40 39 oveq2d m = N A m k _ = A N k _
41 40 oveq1d m = N A m k _ B k _ = A N k _ B k _
42 38 41 oveq12d m = N ( m k) A m k _ B k _ = ( N k) A N k _ B k _
43 42 adantr m = N k 0 m ( m k) A m k _ B k _ = ( N k) A N k _ B k _
44 37 43 sumeq12dv m = N k = 0 m ( m k) A m k _ B k _ = k = 0 N ( N k) A N k _ B k _
45 36 44 eqeq12d m = N A + B m _ = k = 0 m ( m k) A m k _ B k _ A + B N _ = k = 0 N ( N k) A N k _ B k _
46 45 imbi2d m = N A B A + B m _ = k = 0 m ( m k) A m k _ B k _ A B A + B N _ = k = 0 N ( N k) A N k _ B k _
47 fallfac0 A A 0 _ = 1
48 fallfac0 B B 0 _ = 1
49 47 48 oveqan12d A B A 0 _ B 0 _ = 1 1
50 1t1e1 1 1 = 1
51 49 50 eqtrdi A B A 0 _ B 0 _ = 1
52 51 oveq2d A B 1 A 0 _ B 0 _ = 1 1
53 52 50 eqtrdi A B 1 A 0 _ B 0 _ = 1
54 0cn 0
55 ax-1cn 1
56 53 55 eqeltrdi A B 1 A 0 _ B 0 _
57 oveq2 k = 0 ( 0 k) = ( 0 0 )
58 0nn0 0 0
59 bcnn 0 0 ( 0 0 ) = 1
60 58 59 ax-mp ( 0 0 ) = 1
61 57 60 eqtrdi k = 0 ( 0 k) = 1
62 oveq2 k = 0 0 k = 0 0
63 0m0e0 0 0 = 0
64 62 63 eqtrdi k = 0 0 k = 0
65 64 oveq2d k = 0 A 0 k _ = A 0 _
66 oveq2 k = 0 B k _ = B 0 _
67 65 66 oveq12d k = 0 A 0 k _ B k _ = A 0 _ B 0 _
68 61 67 oveq12d k = 0 ( 0 k) A 0 k _ B k _ = 1 A 0 _ B 0 _
69 68 sumsn 0 1 A 0 _ B 0 _ k 0 ( 0 k) A 0 k _ B k _ = 1 A 0 _ B 0 _
70 54 56 69 sylancr A B k 0 ( 0 k) A 0 k _ B k _ = 1 A 0 _ B 0 _
71 addcl A B A + B
72 fallfac0 A + B A + B 0 _ = 1
73 71 72 syl A B A + B 0 _ = 1
74 53 70 73 3eqtr4rd A B A + B 0 _ = k 0 ( 0 k) A 0 k _ B k _
75 simprl n 0 A B A
76 simprr n 0 A B B
77 simpl n 0 A B n 0
78 id A + B n _ = k = 0 n ( n k) A n k _ B k _ A + B n _ = k = 0 n ( n k) A n k _ B k _
79 75 76 77 78 binomfallfaclem2 n 0 A B A + B n _ = k = 0 n ( n k) A n k _ B k _ A + B n + 1 _ = k = 0 n + 1 ( n + 1 k) A n + 1 - k _ B k _
80 79 exp31 n 0 A B A + B n _ = k = 0 n ( n k) A n k _ B k _ A + B n + 1 _ = k = 0 n + 1 ( n + 1 k) A n + 1 - k _ B k _
81 80 a2d n 0 A B A + B n _ = k = 0 n ( n k) A n k _ B k _ A B A + B n + 1 _ = k = 0 n + 1 ( n + 1 k) A n + 1 - k _ B k _
82 13 24 35 46 74 81 nn0ind N 0 A B A + B N _ = k = 0 N ( N k) A N k _ B k _
83 82 com12 A B N 0 A + B N _ = k = 0 N ( N k) A N k _ B k _
84 83 3impia A B N 0 A + B N _ = k = 0 N ( N k) A N k _ B k _