Step |
Hyp |
Ref |
Expression |
1 |
|
binomlem.1 |
|
2 |
|
binomlem.2 |
|
3 |
|
binomlem.3 |
|
4 |
|
binomlem.4 |
|
5 |
4
|
adantl |
|
6 |
5
|
oveq1d |
|
7 |
|
fzfid |
|
8 |
|
fzelp1 |
|
9 |
|
elfzelz |
|
10 |
|
bccl |
|
11 |
3 9 10
|
syl2an |
|
12 |
11
|
nn0cnd |
|
13 |
8 12
|
sylan2 |
|
14 |
|
fznn0sub |
|
15 |
|
expcl |
|
16 |
1 14 15
|
syl2an |
|
17 |
|
elfznn0 |
|
18 |
|
expcl |
|
19 |
2 17 18
|
syl2an |
|
20 |
8 19
|
sylan2 |
|
21 |
16 20
|
mulcld |
|
22 |
13 21
|
mulcld |
|
23 |
7 1 22
|
fsummulc1 |
|
24 |
1
|
adantr |
|
25 |
13 21 24
|
mulassd |
|
26 |
3
|
nn0cnd |
|
27 |
26
|
adantr |
|
28 |
|
1cnd |
|
29 |
|
elfzelz |
|
30 |
29
|
adantl |
|
31 |
30
|
zcnd |
|
32 |
27 28 31
|
addsubd |
|
33 |
32
|
oveq2d |
|
34 |
|
expp1 |
|
35 |
1 14 34
|
syl2an |
|
36 |
33 35
|
eqtrd |
|
37 |
36
|
oveq1d |
|
38 |
16 24 20
|
mul32d |
|
39 |
37 38
|
eqtrd |
|
40 |
39
|
oveq2d |
|
41 |
25 40
|
eqtr4d |
|
42 |
41
|
sumeq2dv |
|
43 |
|
fzssp1 |
|
44 |
43
|
a1i |
|
45 |
|
fznn0sub |
|
46 |
|
expcl |
|
47 |
1 45 46
|
syl2an |
|
48 |
47 19
|
mulcld |
|
49 |
12 48
|
mulcld |
|
50 |
8 49
|
sylan2 |
|
51 |
3
|
adantr |
|
52 |
|
eldifi |
|
53 |
52 9
|
syl |
|
54 |
53
|
adantl |
|
55 |
|
eldifn |
|
56 |
55
|
adantl |
|
57 |
|
bcval3 |
|
58 |
51 54 56 57
|
syl3anc |
|
59 |
58
|
oveq1d |
|
60 |
48
|
mul02d |
|
61 |
52 60
|
sylan2 |
|
62 |
59 61
|
eqtrd |
|
63 |
|
fzssuz |
|
64 |
63
|
a1i |
|
65 |
44 50 62 64
|
sumss |
|
66 |
23 42 65
|
3eqtrd |
|
67 |
66
|
adantr |
|
68 |
6 67
|
eqtrd |
|
69 |
4
|
oveq1d |
|
70 |
7 2 22
|
fsummulc1 |
|
71 |
|
1zzd |
|
72 |
|
0z |
|
73 |
72
|
a1i |
|
74 |
3
|
nn0zd |
|
75 |
2
|
adantr |
|
76 |
22 75
|
mulcld |
|
77 |
|
oveq2 |
|
78 |
|
oveq2 |
|
79 |
78
|
oveq2d |
|
80 |
|
oveq2 |
|
81 |
79 80
|
oveq12d |
|
82 |
77 81
|
oveq12d |
|
83 |
82
|
oveq1d |
|
84 |
71 73 74 76 83
|
fsumshft |
|
85 |
|
oveq1 |
|
86 |
85
|
oveq2d |
|
87 |
85
|
oveq2d |
|
88 |
87
|
oveq2d |
|
89 |
85
|
oveq2d |
|
90 |
88 89
|
oveq12d |
|
91 |
86 90
|
oveq12d |
|
92 |
91
|
oveq1d |
|
93 |
92
|
cbvsumv |
|
94 |
84 93
|
eqtrdi |
|
95 |
26
|
adantr |
|
96 |
|
elfzelz |
|
97 |
96
|
adantl |
|
98 |
97
|
zcnd |
|
99 |
|
1cnd |
|
100 |
95 98 99
|
subsub3d |
|
101 |
100
|
oveq2d |
|
102 |
101
|
oveq1d |
|
103 |
102
|
oveq2d |
|
104 |
103
|
oveq1d |
|
105 |
|
fzp1ss |
|
106 |
72 105
|
ax-mp |
|
107 |
106
|
sseli |
|
108 |
9
|
adantl |
|
109 |
|
peano2zm |
|
110 |
108 109
|
syl |
|
111 |
|
bccl |
|
112 |
3 110 111
|
syl2an2r |
|
113 |
112
|
nn0cnd |
|
114 |
107 113
|
sylan2 |
|
115 |
107 47
|
sylan2 |
|
116 |
2
|
adantr |
|
117 |
|
elfznn |
|
118 |
|
0p1e1 |
|
119 |
118
|
oveq1i |
|
120 |
117 119
|
eleq2s |
|
121 |
120
|
adantl |
|
122 |
|
nnm1nn0 |
|
123 |
121 122
|
syl |
|
124 |
116 123
|
expcld |
|
125 |
115 124
|
mulcld |
|
126 |
114 125 116
|
mulassd |
|
127 |
115 124 116
|
mulassd |
|
128 |
|
expm1t |
|
129 |
2 120 128
|
syl2an |
|
130 |
129
|
oveq2d |
|
131 |
127 130
|
eqtr4d |
|
132 |
131
|
oveq2d |
|
133 |
104 126 132
|
3eqtrd |
|
134 |
133
|
sumeq2dv |
|
135 |
106
|
a1i |
|
136 |
113 48
|
mulcld |
|
137 |
107 136
|
sylan2 |
|
138 |
3
|
adantr |
|
139 |
|
eldifi |
|
140 |
139
|
adantl |
|
141 |
140 9
|
syl |
|
142 |
141 109
|
syl |
|
143 |
|
eldifn |
|
144 |
143
|
adantl |
|
145 |
72
|
a1i |
|
146 |
138
|
nn0zd |
|
147 |
|
1zzd |
|
148 |
|
fzaddel |
|
149 |
145 146 142 147 148
|
syl22anc |
|
150 |
141
|
zcnd |
|
151 |
|
ax-1cn |
|
152 |
|
npcan |
|
153 |
150 151 152
|
sylancl |
|
154 |
153
|
eleq1d |
|
155 |
149 154
|
bitrd |
|
156 |
144 155
|
mtbird |
|
157 |
|
bcval3 |
|
158 |
138 142 156 157
|
syl3anc |
|
159 |
158
|
oveq1d |
|
160 |
139 60
|
sylan2 |
|
161 |
159 160
|
eqtrd |
|
162 |
135 137 161 64
|
sumss |
|
163 |
94 134 162
|
3eqtrd |
|
164 |
70 163
|
eqtrd |
|
165 |
69 164
|
sylan9eqr |
|
166 |
68 165
|
oveq12d |
|
167 |
1 2
|
addcld |
|
168 |
167 3
|
expp1d |
|
169 |
167 3
|
expcld |
|
170 |
169 1 2
|
adddid |
|
171 |
168 170
|
eqtrd |
|
172 |
171
|
adantr |
|
173 |
|
bcpasc |
|
174 |
3 9 173
|
syl2an |
|
175 |
174
|
oveq1d |
|
176 |
12 113 48
|
adddird |
|
177 |
175 176
|
eqtr3d |
|
178 |
177
|
sumeq2dv |
|
179 |
|
fzfid |
|
180 |
179 49 136
|
fsumadd |
|
181 |
178 180
|
eqtrd |
|
182 |
181
|
adantr |
|
183 |
166 172 182
|
3eqtr4d |
|