Step |
Hyp |
Ref |
Expression |
1 |
|
negdi |
|
2 |
1
|
3adant3 |
|
3 |
2
|
oveq1d |
|
4 |
|
negcl |
|
5 |
|
negcl |
|
6 |
|
id |
|
7 |
|
binomfallfac |
|
8 |
4 5 6 7
|
syl3an |
|
9 |
3 8
|
eqtrd |
|
10 |
9
|
oveq2d |
|
11 |
|
fzfid |
|
12 |
|
neg1cn |
|
13 |
|
expcl |
|
14 |
12 13
|
mpan |
|
15 |
14
|
3ad2ant3 |
|
16 |
|
simp3 |
|
17 |
|
elfzelz |
|
18 |
|
bccl |
|
19 |
16 17 18
|
syl2an |
|
20 |
19
|
nn0cnd |
|
21 |
|
simpl1 |
|
22 |
21
|
negcld |
|
23 |
16
|
nn0zd |
|
24 |
|
zsubcl |
|
25 |
23 17 24
|
syl2an |
|
26 |
|
elfzle2 |
|
27 |
26
|
adantl |
|
28 |
|
simpl3 |
|
29 |
28
|
nn0red |
|
30 |
|
elfznn0 |
|
31 |
30
|
adantl |
|
32 |
31
|
nn0red |
|
33 |
29 32
|
subge0d |
|
34 |
27 33
|
mpbird |
|
35 |
|
elnn0z |
|
36 |
25 34 35
|
sylanbrc |
|
37 |
|
fallfaccl |
|
38 |
22 36 37
|
syl2anc |
|
39 |
|
simp2 |
|
40 |
39
|
negcld |
|
41 |
|
fallfaccl |
|
42 |
40 30 41
|
syl2an |
|
43 |
38 42
|
mulcld |
|
44 |
20 43
|
mulcld |
|
45 |
11 15 44
|
fsummulc2 |
|
46 |
10 45
|
eqtrd |
|
47 |
|
addcl |
|
48 |
|
risefallfac |
|
49 |
47 48
|
stoic3 |
|
50 |
|
risefallfac |
|
51 |
21 36 50
|
syl2anc |
|
52 |
|
simpl2 |
|
53 |
|
risefallfac |
|
54 |
52 31 53
|
syl2anc |
|
55 |
51 54
|
oveq12d |
|
56 |
|
expcl |
|
57 |
12 36 56
|
sylancr |
|
58 |
|
expcl |
|
59 |
12 30 58
|
sylancr |
|
60 |
59
|
adantl |
|
61 |
57 38 60 42
|
mul4d |
|
62 |
12
|
a1i |
|
63 |
62 31 36
|
expaddd |
|
64 |
16
|
nn0cnd |
|
65 |
30
|
nn0cnd |
|
66 |
|
npcan |
|
67 |
64 65 66
|
syl2an |
|
68 |
67
|
oveq2d |
|
69 |
63 68
|
eqtr3d |
|
70 |
69
|
oveq1d |
|
71 |
55 61 70
|
3eqtrd |
|
72 |
71
|
oveq2d |
|
73 |
15
|
adantr |
|
74 |
20 73 43
|
mul12d |
|
75 |
72 74
|
eqtrd |
|
76 |
75
|
sumeq2dv |
|
77 |
46 49 76
|
3eqtr4d |
|