Metamath Proof Explorer


Theorem binomrisefac

Description: A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018)

Ref Expression
Assertion binomrisefac A B N 0 A + B N = k = 0 N ( N k) A N k B k

Proof

Step Hyp Ref Expression
1 negdi A B A + B = - A + B
2 1 3adant3 A B N 0 A + B = - A + B
3 2 oveq1d A B N 0 A + B N _ = - A + B N _
4 negcl A A
5 negcl B B
6 id N 0 N 0
7 binomfallfac A B N 0 - A + B N _ = k = 0 N ( N k) A N k _ B k _
8 4 5 6 7 syl3an A B N 0 - A + B N _ = k = 0 N ( N k) A N k _ B k _
9 3 8 eqtrd A B N 0 A + B N _ = k = 0 N ( N k) A N k _ B k _
10 9 oveq2d A B N 0 1 N A + B N _ = 1 N k = 0 N ( N k) A N k _ B k _
11 fzfid A B N 0 0 N Fin
12 neg1cn 1
13 expcl 1 N 0 1 N
14 12 13 mpan N 0 1 N
15 14 3ad2ant3 A B N 0 1 N
16 simp3 A B N 0 N 0
17 elfzelz k 0 N k
18 bccl N 0 k ( N k) 0
19 16 17 18 syl2an A B N 0 k 0 N ( N k) 0
20 19 nn0cnd A B N 0 k 0 N ( N k)
21 simpl1 A B N 0 k 0 N A
22 21 negcld A B N 0 k 0 N A
23 16 nn0zd A B N 0 N
24 zsubcl N k N k
25 23 17 24 syl2an A B N 0 k 0 N N k
26 elfzle2 k 0 N k N
27 26 adantl A B N 0 k 0 N k N
28 simpl3 A B N 0 k 0 N N 0
29 28 nn0red A B N 0 k 0 N N
30 elfznn0 k 0 N k 0
31 30 adantl A B N 0 k 0 N k 0
32 31 nn0red A B N 0 k 0 N k
33 29 32 subge0d A B N 0 k 0 N 0 N k k N
34 27 33 mpbird A B N 0 k 0 N 0 N k
35 elnn0z N k 0 N k 0 N k
36 25 34 35 sylanbrc A B N 0 k 0 N N k 0
37 fallfaccl A N k 0 A N k _
38 22 36 37 syl2anc A B N 0 k 0 N A N k _
39 simp2 A B N 0 B
40 39 negcld A B N 0 B
41 fallfaccl B k 0 B k _
42 40 30 41 syl2an A B N 0 k 0 N B k _
43 38 42 mulcld A B N 0 k 0 N A N k _ B k _
44 20 43 mulcld A B N 0 k 0 N ( N k) A N k _ B k _
45 11 15 44 fsummulc2 A B N 0 1 N k = 0 N ( N k) A N k _ B k _ = k = 0 N 1 N ( N k) A N k _ B k _
46 10 45 eqtrd A B N 0 1 N A + B N _ = k = 0 N 1 N ( N k) A N k _ B k _
47 addcl A B A + B
48 risefallfac A + B N 0 A + B N = 1 N A + B N _
49 47 48 stoic3 A B N 0 A + B N = 1 N A + B N _
50 risefallfac A N k 0 A N k = 1 N k A N k _
51 21 36 50 syl2anc A B N 0 k 0 N A N k = 1 N k A N k _
52 simpl2 A B N 0 k 0 N B
53 risefallfac B k 0 B k = 1 k B k _
54 52 31 53 syl2anc A B N 0 k 0 N B k = 1 k B k _
55 51 54 oveq12d A B N 0 k 0 N A N k B k = 1 N k A N k _ 1 k B k _
56 expcl 1 N k 0 1 N k
57 12 36 56 sylancr A B N 0 k 0 N 1 N k
58 expcl 1 k 0 1 k
59 12 30 58 sylancr k 0 N 1 k
60 59 adantl A B N 0 k 0 N 1 k
61 57 38 60 42 mul4d A B N 0 k 0 N 1 N k A N k _ 1 k B k _ = 1 N k 1 k A N k _ B k _
62 12 a1i A B N 0 k 0 N 1
63 62 31 36 expaddd A B N 0 k 0 N 1 N - k + k = 1 N k 1 k
64 16 nn0cnd A B N 0 N
65 30 nn0cnd k 0 N k
66 npcan N k N - k + k = N
67 64 65 66 syl2an A B N 0 k 0 N N - k + k = N
68 67 oveq2d A B N 0 k 0 N 1 N - k + k = 1 N
69 63 68 eqtr3d A B N 0 k 0 N 1 N k 1 k = 1 N
70 69 oveq1d A B N 0 k 0 N 1 N k 1 k A N k _ B k _ = 1 N A N k _ B k _
71 55 61 70 3eqtrd A B N 0 k 0 N A N k B k = 1 N A N k _ B k _
72 71 oveq2d A B N 0 k 0 N ( N k) A N k B k = ( N k) 1 N A N k _ B k _
73 15 adantr A B N 0 k 0 N 1 N
74 20 73 43 mul12d A B N 0 k 0 N ( N k) 1 N A N k _ B k _ = 1 N ( N k) A N k _ B k _
75 72 74 eqtrd A B N 0 k 0 N ( N k) A N k B k = 1 N ( N k) A N k _ B k _
76 75 sumeq2dv A B N 0 k = 0 N ( N k) A N k B k = k = 0 N 1 N ( N k) A N k _ B k _
77 46 49 76 3eqtr4d A B N 0 A + B N = k = 0 N ( N k) A N k B k