Metamath Proof Explorer


Theorem biorfi

Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 16-Jul-2021)

Ref Expression
Hypothesis biorfi.1 ¬ φ
Assertion biorfi ψ ψ φ

Proof

Step Hyp Ref Expression
1 biorfi.1 ¬ φ
2 orc ψ ψ φ
3 pm2.53 ψ φ ¬ ψ φ
4 1 3 mt3i ψ φ ψ
5 2 4 impbii ψ ψ φ