Metamath Proof Explorer


Theorem birthdaylem1

Description: Lemma for birthday . (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses birthday.s S = f | f : 1 K 1 N
birthday.t T = f | f : 1 K 1-1 1 N
Assertion birthdaylem1 T S S Fin N S

Proof

Step Hyp Ref Expression
1 birthday.s S = f | f : 1 K 1 N
2 birthday.t T = f | f : 1 K 1-1 1 N
3 f1f f : 1 K 1-1 1 N f : 1 K 1 N
4 3 ss2abi f | f : 1 K 1-1 1 N f | f : 1 K 1 N
5 4 2 1 3sstr4i T S
6 fzfi 1 N Fin
7 fzfi 1 K Fin
8 mapvalg 1 N Fin 1 K Fin 1 N 1 K = f | f : 1 K 1 N
9 6 7 8 mp2an 1 N 1 K = f | f : 1 K 1 N
10 1 9 eqtr4i S = 1 N 1 K
11 mapfi 1 N Fin 1 K Fin 1 N 1 K Fin
12 6 7 11 mp2an 1 N 1 K Fin
13 10 12 eqeltri S Fin
14 elfz1end N N 1 N
15 ne0i N 1 N 1 N
16 14 15 sylbi N 1 N
17 10 eqeq1i S = 1 N 1 K =
18 ovex 1 N V
19 ovex 1 K V
20 18 19 map0 1 N 1 K = 1 N = 1 K
21 20 simplbi 1 N 1 K = 1 N =
22 17 21 sylbi S = 1 N =
23 22 necon3i 1 N S
24 16 23 syl N S
25 5 13 24 3pm3.2i T S S Fin N S