Step |
Hyp |
Ref |
Expression |
1 |
|
birthday.s |
|
2 |
|
birthday.t |
|
3 |
|
abn0 |
|
4 |
|
ovex |
|
5 |
4
|
brdom |
|
6 |
3 5
|
bitr4i |
|
7 |
|
hashfz1 |
|
8 |
|
nnnn0 |
|
9 |
|
hashfz1 |
|
10 |
8 9
|
syl |
|
11 |
7 10
|
breqan12d |
|
12 |
|
fzfid |
|
13 |
|
fzfid |
|
14 |
|
hashdom |
|
15 |
12 13 14
|
syl2anc |
|
16 |
|
nn0re |
|
17 |
|
nnre |
|
18 |
|
lenlt |
|
19 |
16 17 18
|
syl2an |
|
20 |
11 15 19
|
3bitr3d |
|
21 |
6 20
|
syl5bb |
|
22 |
21
|
necon4abid |
|
23 |
22
|
biimpar |
|
24 |
2 23
|
syl5eq |
|
25 |
24
|
fveq2d |
|
26 |
|
hash0 |
|
27 |
25 26
|
eqtrdi |
|
28 |
27
|
oveq1d |
|
29 |
1 2
|
birthdaylem1 |
|
30 |
29
|
simp3i |
|
31 |
30
|
ad2antlr |
|
32 |
29
|
simp2i |
|
33 |
|
hashnncl |
|
34 |
32 33
|
ax-mp |
|
35 |
31 34
|
sylibr |
|
36 |
35
|
nncnd |
|
37 |
35
|
nnne0d |
|
38 |
36 37
|
div0d |
|
39 |
28 38
|
eqtrd |
|
40 |
16
|
adantr |
|
41 |
40
|
resqcld |
|
42 |
41 40
|
resubcld |
|
43 |
42
|
rehalfcld |
|
44 |
|
nndivre |
|
45 |
43 44
|
sylancom |
|
46 |
45
|
renegcld |
|
47 |
46
|
adantr |
|
48 |
47
|
rpefcld |
|
49 |
48
|
rpge0d |
|
50 |
39 49
|
eqbrtrd |
|
51 |
|
simplr |
|
52 |
|
simpr |
|
53 |
|
simpll |
|
54 |
|
nn0uz |
|
55 |
53 54
|
eleqtrdi |
|
56 |
|
nnz |
|
57 |
56
|
ad2antlr |
|
58 |
|
elfz5 |
|
59 |
55 57 58
|
syl2anc |
|
60 |
52 59
|
mpbird |
|
61 |
1 2
|
birthdaylem2 |
|
62 |
51 60 61
|
syl2anc |
|
63 |
|
fzfid |
|
64 |
|
elfznn0 |
|
65 |
64
|
adantl |
|
66 |
65
|
nn0red |
|
67 |
53
|
nn0red |
|
68 |
|
peano2rem |
|
69 |
67 68
|
syl |
|
70 |
69
|
adantr |
|
71 |
51
|
adantr |
|
72 |
71
|
nnred |
|
73 |
|
elfzle2 |
|
74 |
73
|
adantl |
|
75 |
51
|
nnred |
|
76 |
67
|
ltm1d |
|
77 |
69 67 75 76 52
|
ltletrd |
|
78 |
77
|
adantr |
|
79 |
66 70 72 74 78
|
lelttrd |
|
80 |
71
|
nncnd |
|
81 |
80
|
mulid1d |
|
82 |
79 81
|
breqtrrd |
|
83 |
|
1red |
|
84 |
71
|
nngt0d |
|
85 |
|
ltdivmul |
|
86 |
66 83 72 84 85
|
syl112anc |
|
87 |
82 86
|
mpbird |
|
88 |
66 71
|
nndivred |
|
89 |
|
1re |
|
90 |
|
difrp |
|
91 |
88 89 90
|
sylancl |
|
92 |
87 91
|
mpbid |
|
93 |
92
|
relogcld |
|
94 |
88
|
renegcld |
|
95 |
|
elfzle1 |
|
96 |
95
|
adantl |
|
97 |
|
divge0 |
|
98 |
66 96 72 84 97
|
syl22anc |
|
99 |
88 98 87
|
eflegeo |
|
100 |
88
|
reefcld |
|
101 |
|
efgt0 |
|
102 |
88 101
|
syl |
|
103 |
92
|
rpregt0d |
|
104 |
|
lerec2 |
|
105 |
100 102 103 104
|
syl21anc |
|
106 |
99 105
|
mpbid |
|
107 |
92
|
reeflogd |
|
108 |
88
|
recnd |
|
109 |
|
efneg |
|
110 |
108 109
|
syl |
|
111 |
106 107 110
|
3brtr4d |
|
112 |
|
efle |
|
113 |
93 94 112
|
syl2anc |
|
114 |
111 113
|
mpbird |
|
115 |
63 93 94 114
|
fsumle |
|
116 |
63 108
|
fsumneg |
|
117 |
51
|
nncnd |
|
118 |
66
|
recnd |
|
119 |
|
nnne0 |
|
120 |
119
|
ad2antlr |
|
121 |
63 117 118 120
|
fsumdivc |
|
122 |
|
arisum2 |
|
123 |
53 122
|
syl |
|
124 |
123
|
oveq1d |
|
125 |
121 124
|
eqtr3d |
|
126 |
125
|
negeqd |
|
127 |
116 126
|
eqtrd |
|
128 |
115 127
|
breqtrd |
|
129 |
63 93
|
fsumrecl |
|
130 |
46
|
adantr |
|
131 |
|
efle |
|
132 |
129 130 131
|
syl2anc |
|
133 |
128 132
|
mpbid |
|
134 |
62 133
|
eqbrtrd |
|
135 |
17
|
adantl |
|
136 |
50 134 135 40
|
ltlecasei |
|