Metamath Proof Explorer


Theorem bitr4id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)

Ref Expression
Hypotheses bitr4id.2 ψ χ
bitr4id.1 φ θ χ
Assertion bitr4id φ ψ θ

Proof

Step Hyp Ref Expression
1 bitr4id.2 ψ χ
2 bitr4id.1 φ θ χ
3 1 bicomi χ ψ
4 2 3 bitr2di φ ψ θ