Metamath Proof Explorer


Theorem bitrd

Description: Deduction form of bitri . (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 14-Apr-2013)

Ref Expression
Hypotheses bitrd.1 φ ψ χ
bitrd.2 φ χ θ
Assertion bitrd φ ψ θ

Proof

Step Hyp Ref Expression
1 bitrd.1 φ ψ χ
2 bitrd.2 φ χ θ
3 1 pm5.74i φ ψ φ χ
4 2 pm5.74i φ χ φ θ
5 3 4 bitri φ ψ φ θ
6 5 pm5.74ri φ ψ θ