Metamath Proof Explorer


Theorem bitri

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)

Ref Expression
Hypotheses bitri.1 φ ψ
bitri.2 ψ χ
Assertion bitri φ χ

Proof

Step Hyp Ref Expression
1 bitri.1 φ ψ
2 bitri.2 ψ χ
3 1 2 sylbb φ χ
4 1 2 sylbbr χ φ
5 3 4 impbii φ χ