Metamath Proof Explorer


Theorem bitsfzolem

Description: Lemma for bitsfzo . (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 1-Oct-2020)

Ref Expression
Hypotheses bitsfzo.1 φN0
bitsfzo.2 φM0
bitsfzo.3 φbitsN0..^M
bitsfzo.4 S=supn0|N<2n<
Assertion bitsfzolem φN0..^2M

Proof

Step Hyp Ref Expression
1 bitsfzo.1 φN0
2 bitsfzo.2 φM0
3 bitsfzo.3 φbitsN0..^M
4 bitsfzo.4 S=supn0|N<2n<
5 nn0uz 0=0
6 1 5 eleqtrdi φN0
7 2nn 2
8 7 a1i φ2
9 8 2 nnexpcld φ2M
10 9 nnzd φ2M
11 3 adantr φ2MNbitsN0..^M
12 n2dvds1 ¬21
13 7 a1i φ2MN2
14 ssrab2 n0|N<2n0
15 14 5 sseqtri n0|N<2n0
16 nnssnn0 0
17 1 nn0red φN
18 2re 2
19 18 a1i φ2
20 1lt2 1<2
21 20 a1i φ1<2
22 expnbnd N21<2nN<2n
23 17 19 21 22 syl3anc φnN<2n
24 ssrexv 0nN<2nn0N<2n
25 16 23 24 mpsyl φn0N<2n
26 rabn0 n0|N<2nn0N<2n
27 25 26 sylibr φn0|N<2n
28 infssuzcl n0|N<2n0n0|N<2nsupn0|N<2n<n0|N<2n
29 15 27 28 sylancr φsupn0|N<2n<n0|N<2n
30 4 29 eqeltrid φSn0|N<2n
31 14 30 sselid φS0
32 31 nn0zd φS
33 32 adantr φ2MNS
34 0red φ2MN0
35 2 nn0zd φM
36 35 adantr φ2MNM
37 36 zred φ2MNM
38 33 zred φ2MNS
39 2 adantr φ2MNM0
40 39 nn0ge0d φ2MN0M
41 18 a1i φ2MN2
42 41 39 reexpcld φ2MN2M
43 17 adantr φ2MNN
44 8 31 nnexpcld φ2S
45 44 adantr φ2MN2S
46 45 nnred φ2MN2S
47 simpr φ2MN2MN
48 30 adantr φ2MNSn0|N<2n
49 oveq2 m=S2m=2S
50 49 breq2d m=SN<2mN<2S
51 oveq2 n=m2n=2m
52 51 breq2d n=mN<2nN<2m
53 52 cbvrabv n0|N<2n=m0|N<2m
54 50 53 elrab2 Sn0|N<2nS0N<2S
55 54 simprbi Sn0|N<2nN<2S
56 48 55 syl φ2MNN<2S
57 42 43 46 47 56 lelttrd φ2MN2M<2S
58 20 a1i φ2MN1<2
59 41 36 33 58 ltexp2d φ2MNM<S2M<2S
60 57 59 mpbird φ2MNM<S
61 34 37 38 40 60 lelttrd φ2MN0<S
62 elnnz SS0<S
63 33 61 62 sylanbrc φ2MNS
64 nnm1nn0 SS10
65 63 64 syl φ2MNS10
66 13 65 nnexpcld φ2MN2S1
67 66 nncnd φ2MN2S1
68 67 mullidd φ2MN12S1=2S1
69 66 nnred φ2MN2S1
70 38 ltm1d φ2MNS1<S
71 65 nn0red φ2MNS1
72 71 38 ltnled φ2MNS1<S¬SS1
73 70 72 mpbid φ2MN¬SS1
74 oveq2 m=S12m=2S1
75 74 breq2d m=S1N<2mN<2S1
76 75 53 elrab2 S1n0|N<2nS10N<2S1
77 infssuzle n0|N<2n0S1n0|N<2nsupn0|N<2n<S1
78 15 77 mpan S1n0|N<2nsupn0|N<2n<S1
79 4 78 eqbrtrid S1n0|N<2nSS1
80 79 a1i φ2MNS1n0|N<2nSS1
81 76 80 biimtrrid φ2MNS10N<2S1SS1
82 65 81 mpand φ2MNN<2S1SS1
83 73 82 mtod φ2MN¬N<2S1
84 69 43 83 nltled φ2MN2S1N
85 68 84 eqbrtrd φ2MN12S1N
86 1red φ2MN1
87 2rp 2+
88 87 a1i φ2MN2+
89 1z 1
90 89 a1i φ2MN1
91 33 90 zsubcld φ2MNS1
92 88 91 rpexpcld φ2MN2S1+
93 86 43 92 lemuldivd φ2MN12S1N1N2S1
94 85 93 mpbid φ2MN1N2S1
95 2cn 2
96 expm1t 2S2S=2S12
97 95 63 96 sylancr φ2MN2S=2S12
98 56 97 breqtrd φ2MNN<2S12
99 43 41 92 ltdivmuld φ2MNN2S1<2N<2S12
100 98 99 mpbird φ2MNN2S1<2
101 df-2 2=1+1
102 100 101 breqtrdi φ2MNN2S1<1+1
103 43 92 rerpdivcld φ2MNN2S1
104 flbi N2S11N2S1=11N2S1N2S1<1+1
105 103 89 104 sylancl φ2MNN2S1=11N2S1N2S1<1+1
106 94 102 105 mpbir2and φ2MNN2S1=1
107 106 breq2d φ2MN2N2S121
108 12 107 mtbiri φ2MN¬2N2S1
109 1 nn0zd φN
110 bitsval2 NS10S1bitsN¬2N2S1
111 109 65 110 syl2an2r φ2MNS1bitsN¬2N2S1
112 108 111 mpbird φ2MNS1bitsN
113 11 112 sseldd φ2MNS10..^M
114 elfzolt2 S10..^MS1<M
115 113 114 syl φ2MNS1<M
116 zlem1lt SMSMS1<M
117 32 36 116 syl2an2r φ2MNSMS1<M
118 115 117 mpbird φ2MNSM
119 37 38 ltnled φ2MNM<S¬SM
120 60 119 mpbid φ2MN¬SM
121 118 120 pm2.65da φ¬2MN
122 9 nnred φ2M
123 17 122 ltnled φN<2M¬2MN
124 121 123 mpbird φN<2M
125 elfzo2 N0..^2MN02MN<2M
126 6 10 124 125 syl3anbrc φN0..^2M