Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
bitsinv
Next ⟩
bitsinvp1
Metamath Proof Explorer
Ascii
Unicode
Theorem
bitsinv
Description:
The inverse of the
bits
function.
(Contributed by
Mario Carneiro
, 8-Sep-2016)
Ref
Expression
Hypothesis
bitsinv.k
⊢
K
=
bits
↾
ℕ
0
-1
Assertion
bitsinv
⊢
A
∈
𝒫
ℕ
0
∩
Fin
→
K
⁡
A
=
∑
k
∈
A
2
k
Proof
Step
Hyp
Ref
Expression
1
bitsinv.k
⊢
K
=
bits
↾
ℕ
0
-1
2
sumeq1
⊢
x
=
A
→
∑
k
∈
x
2
k
=
∑
k
∈
A
2
k
3
bitsf1ocnv
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
∧
bits
↾
ℕ
0
-1
=
x
∈
𝒫
ℕ
0
∩
Fin
⟼
∑
k
∈
x
2
k
4
3
simpri
⊢
bits
↾
ℕ
0
-1
=
x
∈
𝒫
ℕ
0
∩
Fin
⟼
∑
k
∈
x
2
k
5
1
4
eqtri
⊢
K
=
x
∈
𝒫
ℕ
0
∩
Fin
⟼
∑
k
∈
x
2
k
6
sumex
⊢
∑
k
∈
A
2
k
∈
V
7
2
5
6
fvmpt
⊢
A
∈
𝒫
ℕ
0
∩
Fin
→
K
⁡
A
=
∑
k
∈
A
2
k