| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bitsinv.k |
|
| 2 |
|
fzonel |
|
| 3 |
2
|
a1i |
|
| 4 |
|
disjsn |
|
| 5 |
3 4
|
sylibr |
|
| 6 |
5
|
ineq2d |
|
| 7 |
|
inindi |
|
| 8 |
|
in0 |
|
| 9 |
6 7 8
|
3eqtr3g |
|
| 10 |
|
simpr |
|
| 11 |
|
nn0uz |
|
| 12 |
10 11
|
eleqtrdi |
|
| 13 |
|
fzosplitsn |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
ineq2d |
|
| 16 |
|
indi |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
|
fzofi |
|
| 19 |
18
|
a1i |
|
| 20 |
|
inss2 |
|
| 21 |
|
ssfi |
|
| 22 |
19 20 21
|
sylancl |
|
| 23 |
|
2nn |
|
| 24 |
23
|
a1i |
|
| 25 |
|
inss1 |
|
| 26 |
|
simpl |
|
| 27 |
25 26
|
sstrid |
|
| 28 |
27
|
sselda |
|
| 29 |
24 28
|
nnexpcld |
|
| 30 |
29
|
nncnd |
|
| 31 |
9 17 22 30
|
fsumsplit |
|
| 32 |
|
elfpw |
|
| 33 |
27 22 32
|
sylanbrc |
|
| 34 |
1
|
bitsinv |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
inss1 |
|
| 37 |
36 26
|
sstrid |
|
| 38 |
|
fzofi |
|
| 39 |
38
|
a1i |
|
| 40 |
|
inss2 |
|
| 41 |
|
ssfi |
|
| 42 |
39 40 41
|
sylancl |
|
| 43 |
|
elfpw |
|
| 44 |
37 42 43
|
sylanbrc |
|
| 45 |
1
|
bitsinv |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
snssi |
|
| 48 |
47
|
adantl |
|
| 49 |
|
sseqin2 |
|
| 50 |
48 49
|
sylib |
|
| 51 |
50
|
sumeq1d |
|
| 52 |
|
simpr |
|
| 53 |
23
|
a1i |
|
| 54 |
|
simplr |
|
| 55 |
53 54
|
nnexpcld |
|
| 56 |
55
|
nncnd |
|
| 57 |
|
oveq2 |
|
| 58 |
57
|
sumsn |
|
| 59 |
52 56 58
|
syl2anc |
|
| 60 |
51 59
|
eqtr2d |
|
| 61 |
|
simpr |
|
| 62 |
|
disjsn |
|
| 63 |
61 62
|
sylibr |
|
| 64 |
63
|
sumeq1d |
|
| 65 |
|
sum0 |
|
| 66 |
64 65
|
eqtr2di |
|
| 67 |
60 66
|
ifeqda |
|
| 68 |
46 67
|
oveq12d |
|
| 69 |
31 35 68
|
3eqtr4d |
|