| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
2nn |
|
| 3 |
2
|
a1i |
|
| 4 |
|
simpr |
|
| 5 |
3 4
|
nnexpcld |
|
| 6 |
1 5
|
zmodcld |
|
| 7 |
6
|
nn0zd |
|
| 8 |
7
|
znegcld |
|
| 9 |
|
sadadd |
|
| 10 |
8 1 9
|
syl2anc |
|
| 11 |
|
sadadd |
|
| 12 |
8 7 11
|
syl2anc |
|
| 13 |
8
|
zcnd |
|
| 14 |
7
|
zcnd |
|
| 15 |
13 14
|
addcomd |
|
| 16 |
14
|
negidd |
|
| 17 |
15 16
|
eqtrd |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
0bits |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
12 20
|
eqtrd |
|
| 22 |
21
|
oveq1d |
|
| 23 |
|
bitsss |
|
| 24 |
|
bitsss |
|
| 25 |
|
inss1 |
|
| 26 |
|
bitsss |
|
| 27 |
26
|
a1i |
|
| 28 |
25 27
|
sstrid |
|
| 29 |
|
sadass |
|
| 30 |
23 24 28 29
|
mp3an12i |
|
| 31 |
|
bitsmod |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
inss1 |
|
| 34 |
33 27
|
sstrid |
|
| 35 |
|
fzouzdisj |
|
| 36 |
35
|
ineq2i |
|
| 37 |
|
inindi |
|
| 38 |
|
in0 |
|
| 39 |
36 37 38
|
3eqtr3i |
|
| 40 |
39
|
a1i |
|
| 41 |
34 28 40
|
saddisj |
|
| 42 |
|
indi |
|
| 43 |
41 42
|
eqtr4di |
|
| 44 |
|
nn0uz |
|
| 45 |
4 44
|
eleqtrdi |
|
| 46 |
|
fzouzsplit |
|
| 47 |
45 46
|
syl |
|
| 48 |
44 47
|
eqtrid |
|
| 49 |
26 48
|
sseqtrid |
|
| 50 |
|
dfss2 |
|
| 51 |
49 50
|
sylib |
|
| 52 |
43 51
|
eqtrd |
|
| 53 |
32 52
|
eqtrd |
|
| 54 |
53
|
oveq2d |
|
| 55 |
30 54
|
eqtrd |
|
| 56 |
|
sadid2 |
|
| 57 |
28 56
|
syl |
|
| 58 |
22 55 57
|
3eqtr3d |
|
| 59 |
1
|
zcnd |
|
| 60 |
13 59
|
addcomd |
|
| 61 |
59 14
|
negsubd |
|
| 62 |
59 14
|
subcld |
|
| 63 |
5
|
nncnd |
|
| 64 |
5
|
nnne0d |
|
| 65 |
62 63 64
|
divcan1d |
|
| 66 |
1
|
zred |
|
| 67 |
5
|
nnrpd |
|
| 68 |
|
moddiffl |
|
| 69 |
66 67 68
|
syl2anc |
|
| 70 |
69
|
oveq1d |
|
| 71 |
61 65 70
|
3eqtr2d |
|
| 72 |
60 71
|
eqtrd |
|
| 73 |
72
|
fveq2d |
|
| 74 |
10 58 73
|
3eqtr3d |
|