Metamath Proof Explorer


Theorem bj-ab0

Description: The class of sets verifying a falsity is the empty set (closed form of abf ). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ab0 x ¬ φ x | φ =

Proof

Step Hyp Ref Expression
1 stdpc4 x ¬ φ y x ¬ φ
2 sbn1 y x ¬ φ ¬ y x φ
3 1 2 syl x ¬ φ ¬ y x φ
4 df-clab y x | φ y x φ
5 3 4 sylnibr x ¬ φ ¬ y x | φ
6 5 eq0rdv x ¬ φ x | φ =