Metamath Proof Explorer


Theorem bj-abv

Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-abv x φ x | φ = V

Proof

Step Hyp Ref Expression
1 trud φ φ
2 simpl φ φ
3 1 2 impbida φ φ
4 3 alimi x φ x φ
5 abbi1 x φ x | φ = x |
6 4 5 syl x φ x | φ = x |
7 dfv2 V = x |
8 6 7 eqtr4di x φ x | φ = V