Metamath Proof Explorer


Theorem bj-ax12

Description: Remove a DV condition from bj-ax12v (using core axioms only). (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ax12 x x = t φ x x = t φ

Proof

Step Hyp Ref Expression
1 bj-ax12v x x = y φ x x = y φ
2 equequ2 y = t x = y x = t
3 2 imbi1d y = t x = y φ x = t φ
4 3 albidv y = t x x = y φ x x = t φ
5 4 imbi2d y = t φ x x = y φ φ x x = t φ
6 2 5 imbi12d y = t x = y φ x x = y φ x = t φ x x = t φ
7 6 albidv y = t x x = y φ x x = y φ x x = t φ x x = t φ
8 1 7 mpbii y = t x x = t φ x x = t φ
9 ax6ev y y = t
10 8 9 exlimiiv x x = t φ x x = t φ