Metamath Proof Explorer


Theorem bj-ax12ig

Description: A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i . (Contributed by BJ, 19-Dec-2020)

Ref Expression
Hypotheses bj-ax12ig.1 φ ψ χ
bj-ax12ig.2 φ χ x χ
Assertion bj-ax12ig φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 bj-ax12ig.1 φ ψ χ
2 bj-ax12ig.2 φ χ x χ
3 1 pm5.32i φ ψ φ χ
4 2 imp φ χ x χ
5 1 biimprcd χ φ ψ
6 4 5 sylg φ χ x φ ψ
7 3 6 sylbi φ ψ x φ ψ
8 7 ex φ ψ x φ ψ